16.將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{3}$個單位,再將圖象上所有點的橫坐標縮短為原來的$\frac{1}{2}$倍(縱坐標不變),所得圖象的解析式為y=sinx,則ω,φ的值分別為( 。
A.ω=$\frac{1}{2},φ=\frac{π}{6}$B.$ω=\frac{1}{2},φ=-\frac{π}{6}$C.$ω=2,φ=\frac{π}{6}$D.$ω=2,φ=-\frac{π}{6}$

分析 由題意利用y=Asin(ωx+φ)的圖象變換規(guī)律,即可求得ω和φ的值.

解答 解:由題意,將y=sinx圖象上所有點的橫坐標伸長為原來的2倍,得到$y=sin\frac{1}{2}x$的圖象,
再將該圖象向左平移$\frac{π}{3}$個單位,得到$y=sin\frac{1}{2}({x+\frac{π}{3}})=sin({\frac{1}{2}x+\frac{π}{6}})$的圖象即為函數(shù)y=sin(ωx+φ)的圖象,
可得:ω=$\frac{1}{2},φ=\frac{π}{6}$.
故選:A.

點評 本題主要考查了y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ln(x+1)-ax,x=0是極值點.
(1)求實數(shù)a的值;
(2)設(shè)g(x)=$\frac{f(x-1)+x-1}{x}$,試比較g(4)+g(9)+…+g(n2)與$\frac{{2{n^2}-n-1}}{2(n+1)}$(n∈Z,n≥2)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知正實數(shù)a,b,c滿足a+b2+c3=1.
(Ⅰ)求$\frac{1}{a^2}$+$\frac{1}{b^4}$+$\frac{1}{c^6}$的最小值m;
(Ⅱ)在(Ⅰ)的條件下,若|x-d|+|x+16|≥m恒成立,求實數(shù)d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義在R上的函數(shù)y=f(x),如果函數(shù)圖象上任意一點都在曲線y2=|x|上,則下列結(jié)論正確的是①④⑤(寫出所有正確結(jié)論的序號).
①f(0)=0;
②函數(shù)y=f(x)值域為R;
③函數(shù)y=f(x)是奇函數(shù);
④函數(shù)y=f(x)的圖象與直線x=1有且僅有一個交點;
⑤函數(shù)y=f(x)的圖象與直線y=1最多有兩個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若f(x)=$\left\{\begin{array}{l}a{x^2}+1,x≥0\\({a^2}-1){e^{ax}},x<0\end{array}$(a≠±1),在定義域(-∞,+∞)上是單調(diào)函數(shù),則a的取值范圍是( 。
A.(1,$\sqrt{2}$]B.[-$\sqrt{2}$,-1)∪[${\sqrt{2}$,+∞)C.(-∞,-$\sqrt{2}}$]∪(1,$\sqrt{2}}$]D.(0,$\frac{2}{3}}$)∪[${\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)全集U=R,集合A={x|0<x≤2},B={x|x2<1},則集合∁U(A∪B)等于(  )
A.(-∞,-1]B.[-1,2)C.(2,+∞)D.(-∞,-1]∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$滿足$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$=$\overrightarrow 0$且$\overrightarrow a$⊥$\overrightarrow c$,|${\overrightarrow b}$|=2|${\overrightarrow a}$|,則tan<$\overrightarrow{a}$,$\overrightarrow$>=(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.己知函數(shù)f(x)=$\sqrt{3}$sinxcosx+sin2x+$\frac{1}{2}$(x∈R),
(Ⅰ)當x∈[-$\frac{π}{4},\frac{π}{6}}$]時,求函數(shù)f(x)的最小值和最大值;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=2,若向量$\overrightarrow m=({1,a}$)與向量$\overrightarrow n=({2,b}$)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)g(x)=Asinωx(A>0,ω>0)的最大值為2,其圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$,將g(x)向右平移$\frac{π}{12}$個單位,再向上平移一個單位得到f(x)的圖象
(1)求函數(shù)f(x)的解析式;
(2)設(shè)$α∈(0,\frac{π}{2})$,則$f(\frac{α}{2})=2$,求α的值.

查看答案和解析>>

同步練習(xí)冊答案