14.已知向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=(cosx,$\frac{3}{2}$),函數(shù)f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{8}$個單位得到函數(shù)g(x)的圖象,在△ABC中,角A,B,C所對邊分別a,b,c,若a=3,g($\frac{A}{2}$)=$\frac{\sqrt{6}}{6}$,sinB=cosA,求b的值.

分析 (1)運用向量的加減運算和數(shù)量積的坐標表示,以及二倍角公式和正弦公式,由正弦函數(shù)的增區(qū)間,解不等式即可得到所求;
(2)運用圖象變換,可得g(x)的解析式,由條件可得sinA,cosA,sinB的值,運用正弦定理計算即可得到所求值.

解答 解:(1)向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=(cosx,$\frac{3}{2}$),
函數(shù)f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$=(sinx+cosx,$\frac{1}{2}$)•(sinx,-1)
=sin2x+sinxcosx-$\frac{1}{2}$=$\frac{1}{2}$sin2x-$\frac{1}{2}$(1-2sin2x)=$\frac{1}{2}$sin2x-$\frac{1}{2}$cos2x=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,
可得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,k∈Z,
即有函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z;
(2)由題意可得g(x)=$\frac{\sqrt{2}}{2}$sin(2(x+$\frac{π}{8}$)-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$sin2x,
g($\frac{A}{2}$)=$\frac{\sqrt{2}}{2}$sinA=$\frac{\sqrt{6}}{6}$,
即sinA=$\frac{\sqrt{3}}{3}$,cosA=±$\sqrt{1-\frac{1}{3}}$=±$\frac{\sqrt{6}}{3}$,
在△ABC中,sinB=cosA>0,
可得sinB=$\frac{\sqrt{6}}{3}$,
由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$,
可得b=$\frac{asinB}{sinA}$=$\frac{3×\frac{\sqrt{6}}{3}}{\frac{\sqrt{3}}{3}}$=3$\sqrt{2}$.

點評 本題考查向量數(shù)量積的坐標表示和三角函數(shù)的恒等變換,考查正弦函數(shù)的圖象和性質(zhì),以及圖象變換,考查解三角形的正弦定理的運用,以及運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.下表提供了某公司技術(shù)升級后生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的成本y(萬元)的幾組對照數(shù)據(jù):
x3456
y2.5344.5
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y對x的回歸直線方程;
(3)已知該公司技術(shù)升級前生產(chǎn)100噸A產(chǎn)品的成本為90萬元.試根據(jù)(2)求出的回歸直線方程,預測技術(shù)升級后生產(chǎn)100噸A產(chǎn)品的成本比技術(shù)升級前約降低多少萬元?
(附:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{1}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為A,點B(0,$\frac{\sqrt{15}}{3}$b),若線段AB的垂直平分線過右焦點F,則雙曲線C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知點P在拋物線y2=x上,點Q在圓(x+$\frac{1}{2}$)2+(y-4)2=1上,則|PQ|的最小值為( 。
A.$\frac{{3\sqrt{5}}}{2}-1$B.$\frac{{3\sqrt{3}}}{2}-1$C.$2\sqrt{3}-1$D.$\sqrt{10}-1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)f(x)=$\left\{\begin{array}{l}{-x-1,x<1}\\{(\frac{1}{2})^{x-1},x≥1}\end{array}\right.$的圖象與函數(shù)g(x)=log2(x+a)(a∈R)的圖象恰有一個交點,則實數(shù)a的取值范圍是( 。
A.a>1B.a≤-$\frac{3}{4}$C.a≥1或a<-$\frac{3}{4}$D.a>1或a≤-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.以直角坐標系原點O為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),0<α<π),曲線C的極坐標方程ρ=$\frac{2cosθ}{si{n}^{2}θ}$.
(1)求曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A,B兩點,已知定點P($\frac{1}{2},\;0$),當α=$\frac{π}{3}$時,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在數(shù)列{an}中,a1=4,nan+1-(n+1)an=2n2+2n.
(Ⅰ)求證:數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是等差數(shù)列;
(Ⅱ)求數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在直角坐標系xoy中,直線l:$\left\{\begin{array}{l}x=-\sqrt{2}+tcosα\\ y=tsinα\end{array}\right.(t為參數(shù),0≤α<\frac{π}{2})$,在以原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C:${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}(0≤θ<2π)$,若直線與y軸正半軸交于點M,與曲線C交于A、B兩點,其中點A在第一象限.
(Ⅰ)求曲線C的直角坐標方程及點M對應的參數(shù)tM(用α表示);
(Ⅱ)設曲線C的左焦點為F1,若|F1B|=|AM|,求直線l的傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知向量$\vec a=(sinx,-1),\vec b=(\sqrt{3}cosx,-\frac{1}{2})$,函數(shù)$f(x)=({\vec a+\vec b})•\vec a-1$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,若$f(\frac{A}{2})=\frac{3}{2}$,a=2,求b+c的取值范圍.

查看答案和解析>>

同步練習冊答案