下列函數(shù)中,在其定義域上為減函數(shù)的是( 。
A、y=x
1
2
B、y=(
1
3
)x
C、y=sinx
D、y=log2x
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用指數(shù)函數(shù),對數(shù)函數(shù)以及正弦函數(shù)的圖象和性質(zhì)判斷函數(shù)的單調(diào)性即可.
解答: 解:函數(shù)y=x
1
2
在定義域上單調(diào)遞增.
由指數(shù)函數(shù)的單調(diào)性可知,y=(
1
3
x是減函數(shù).
由正弦函數(shù)的圖象和性質(zhì)可知,y=sinx在定義域上不是減函數(shù).
由對數(shù)函數(shù)的性質(zhì)可知y═log2x是增函數(shù).
故選:B.
點(diǎn)評:本題考查基本函數(shù)單調(diào)性的判斷與應(yīng)用,屬于基本的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinx,x∈R的最小正周期是( 。
A、π
B、2π
C、4π
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)F1(-
3
,0),F(xiàn)2
3
,0),△ABC內(nèi)切圓心在直線x=1,x=-1上移動,
(1)求頂點(diǎn)C的軌跡方程;
(2)過圓x2+y2=2上一點(diǎn)的切線l交軌跡C于點(diǎn)A,B兩點(diǎn),求證:∠AOB為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:?x∈(-∞,0),2x<3x;命題q:?a>0函數(shù)f(x)=ln2x+lnx-a有零點(diǎn).則下列命題為真命題的是( D )(  )
A、p∧q
B、p∨(¬q)
C、p∧(¬q)
D、(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一機(jī)器狗每秒前進(jìn)或后退一步,程序設(shè)計(jì)師讓機(jī)器狗以前進(jìn)3步,然后再后退2步的規(guī)律移動,如果將此機(jī)器狗放在數(shù)軸的原點(diǎn),面向數(shù)軸的正方向,以1步的距離為1單位長,令P(n)表示第n秒時機(jī)器狗所在位置的坐標(biāo),且P(0)=0,那么下列結(jié)論中錯誤的是( 。
A、P(3)=3
B、P(5)=1
C、P(101)=21
D、P(2012)>P(2013)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1)
b
=(1,x)
,若
a
b
,則實(shí)數(shù)x的值為( 。
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)=x2-
54
x
(x<0)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B是集合{a1,a2,a3,a4,a5}的兩個不同子集,
(1)則不同的有序集合對(A,B)的組數(shù)為
 
;
(2)若使得A不是B的子集,B也不是A的子集,則不同的有序集合對(A,B)的組數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x2+2x+3<0的解集是( 。
A、∅
B、R
C、(1,2)
D、(-∞,1)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案