將下列各式按大小順序排列,其中正確的是(  )
A、cos0<cos
1
2
<cos1<cos30°
B、cos0<cos
1
2
<cos30°<cos1
C、cos0>cos
1
2
>cos1>cos30°
D、cos0>cos
1
2
>cos30°>cos1
考點:余弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:先將1和
1
2
化為角度,再根據(jù)余弦函數(shù)的單調(diào)性,判斷出四個余弦值的大小關系.
解答: 解:∵1≈57.30°,∴
1
2
≈28.56°,
則0<
1
2
<30°<1,
∵y=cosx在(0°,180°)上是減函數(shù),
∴cos0>cos
1
2
>cos30°>cos1,
故選D.
點評:本題主要考查余弦函數(shù)的單調(diào)性,以及弧度與角度之間的轉(zhuǎn)化,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,程序框圖(即算法流程圖)運算的結果是( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,真命題是( 。
A、a+b=0的充要條件是
a
b
=-1
B、?x0∈R,x02≤0
C、?x∈R,2x>1
D、ab>0是a>0,b>0的充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經(jīng)過點(3a,-4a)(a<0),則sinα+cosα等于(  )
A、
1
5
B、
7
5
C、-
1
5
D、-
7
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,不規(guī)則圖形ABCD中:AB和CD是線段,AD和BC是圓弧,直線l⊥AB于E,當l從左至右移動(與線段AB有公共點)時,把四邊形ABCD分成兩部分,設AE=x,左側(cè)部分面積為y,則y關于x的大致圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,直線PA⊥平面ABC,且∠ABC=90°,又點Q,M,N分別是線段PB,AB,BC的中點,且點K是線段MN上的動點.
(1)證明:直線QK∥平面PAC;
(2)若PA=AB=BC,求二面角Q-AN-M的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:在四棱錐P-ABCD中,底面ABCD是正方形,PA=AB=2,PB=PD=2
2
,點E在PD上,且PE=
1
3
PD.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的余弦值;
(Ⅲ)證明:在線段BC上存在點F,使PF∥平面EAC,并求BF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式2x2-9x+m≤0對x∈[2,3]總成立,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題甲:關于x的不等式x2+(a-1)x+a2>0的解集為R;命題乙:函數(shù)y=(2a2-a)x為增函數(shù),當甲、乙有且只有一個是真命題時,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案