精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=(x﹣2)ex +kx(k是常數,e是自然對數的底數,e=2.71828…)在區(qū)間(0,2)內存在兩個極值點,則實數k的取值范圍是

【答案】(1,e)∪(e,e2
【解析】解:f′(x)=(x﹣1)ex﹣k(x﹣1)=(x﹣1)(ex﹣k), 若f(x)在(0,2)內存在兩個極值點,
則f′(x)=0在(0,2)有2個解,
令f′(x)=0,解得:x=1或k=ex ,
而y=ex(0<x<2)的值域是(1,e2),
故k∈(1,e)∪(e,e2),
所以答案是:(1,e)∪(e,e2).
【考點精析】本題主要考查了函數的極值與導數的相關知識點,需要掌握求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在矩形 中, ,點 的中點, 為線段 (端點除外)上一動點.現將 沿 折起,使得平面 平面 .設直線 與平面 所成角為 ,則 的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=cosx的圖象與直線x= ,x= 以及x軸所圍成的圖形的面積為a,則(x﹣ )(2x﹣ 5的展開式中的常數項為(用數字作答).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓C: 的右頂點為A,離心率為e,且橢圓C過點 ,以AE為直徑的圓恰好經過橢圓的右焦點.

(1)求橢圓C的標準方程;
(2)已知動直線l(直線l不過原點且斜率存在)與橢圓C交于P,Q兩個不同的點,且△OPQ的面積S=1,若N為線段PQ的中點,問:在x軸上是否存在兩個定點E1 , E2 , 使得直線NE1與NE2的斜率之積為定值?若存在,求出E1 , E2的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知MOD函數是一個求余函數,記MOD(m,n)表示m除以n的余數,例如MOD(8,3)=2.如圖是某個算法的程序框圖,若輸入m的值為48時,則輸出i的值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為實數,設函數,設

(1)求的取值范圍,并把表示為的函數;

(2)若恒成立,求實數的取值范圍;

(3)若存在使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線 過坐標原點 ,圓 的方程為
(1)當直線 的斜率為 時,求 與圓 相交所得的弦長;
(2)設直線 與圓 交于兩點 ,且 的中點,求直線 的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線 的頂點在原點 ,對稱軸是 軸,且過點 .
(Ⅰ)求拋物線 的方程;
(Ⅱ)已知斜率為 的直線 軸于點 ,且與曲線 相切于點 ,點 在曲線 上,且直線 軸, 關于點 的對稱點為 ,判斷點 是否共線,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知頂點在單位圓上的 中,角 的對邊分別為 ,且 .
(1)求 的值;
(2)若 ,求 的面積.

查看答案和解析>>

同步練習冊答案