【題目】某校為了普及環(huán)保知識(shí),增強(qiáng)學(xué)生的環(huán)保意識(shí),在全校組織了一次有關(guān)環(huán)保知識(shí)的競(jìng)賽.經(jīng)過(guò)初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)3人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問(wèn)題,答對(duì)為本隊(duì)贏得10分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為 ,乙隊(duì)中3人答對(duì)的概率分別為 , , ,且各人回答正確與否相互之間沒(méi)有影響,用ξ表示乙隊(duì)的總得分. (Ⅰ)求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率.
【答案】解:由題意知,ξ的可能取值為0,10,20,30,
由于乙隊(duì)中3人答對(duì)的概率分別為 , , ,
P(ξ=0)=(1﹣ )×(1﹣ )×(1﹣ )= ,
P(ξ=10)= ×(1﹣ )×(1﹣ )+(1﹣ )× ×(1﹣ )+(1﹣ )×(1﹣ )× = = ,
P(ξ=20)= × ×(1﹣ )+(1﹣ )× × + ×(1﹣ )× = = ,
P(ξ=30)= × × = ,
∴ξ的分布列為:
ξ | 0 | 10 | 20 | 30 |
P |
|
|
|
|
∴Eξ=0× +10× +20× +30× = .
(Ⅱ)由A表示“甲隊(duì)得分等于30乙隊(duì)得分等于0”,B表示“甲隊(duì)得分等于20乙隊(duì)得分等于10”,可知A、B互斥.
又P(A)= = ,P(B)= × × = ,
則甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率為
P(A+B)=P(A)+P(B)= = .
【解析】(Ⅰ)由題意知,ξ的可能取值為0,10,20,30,分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ;(Ⅱ)由A表示“甲隊(duì)得分等于30乙隊(duì)得分等于0”,B表示“甲隊(duì)得分等于20乙隊(duì)得分等于10”,可知A、B互斥.利用互斥事件的概率計(jì)算公式即可得出甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率.
【考點(diǎn)精析】利用離散型隨機(jī)變量及其分布列對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線(xiàn),過(guò)作圓柱的截面交下底面于,四邊形ABCD是正方形.
(1)求證;
(2)求四棱錐E-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 底面,底面為矩形,且, 為的中點(diǎn).
(1)過(guò)點(diǎn)作一條射線(xiàn),使得,求證:平面平面;
(2)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三人獨(dú)立破譯同一份密碼.已知三人各自破譯出密碼的概率分別為 ,且他們是否破譯出密碼互不影響. (Ⅰ)求恰有二人破譯出密碼的概率;
(Ⅱ)“密碼被破譯”與“密碼未被破譯”的概率哪個(gè)大?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB的中點(diǎn),且△PDB是正三角形,PA⊥PC.
(1)求證:平面PAC⊥平面ABC.
(2)求二面角D-AP-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】人口問(wèn)題是當(dāng)今世界各國(guó)普遍關(guān)注的問(wèn)題.認(rèn)識(shí)人口數(shù)量的變化規(guī)律,可以為有效控制人口增長(zhǎng)提供依據(jù).早在1798年,英國(guó)經(jīng)濟(jì)學(xué)家馬爾薩斯(T.R.Malthus,1766—1834)就提出了自然狀態(tài)下的人口增長(zhǎng)模型: ,其中x表示經(jīng)過(guò)的時(shí)間, 表示x=0時(shí)的人口,r表示人口的平均增長(zhǎng)率.
下表是1950―1959年我國(guó)人口數(shù)據(jù)資料:
如果以各年人口增長(zhǎng)率的平均值作為我國(guó)這一時(shí)期的人口增長(zhǎng)率,用馬爾薩斯人口增長(zhǎng)模型建立我國(guó)這一時(shí)期的具體人口增長(zhǎng)模型,某同學(xué)利用圖形計(jì)算器進(jìn)行了如下探究:
由此可得到我國(guó)1950―1959年我國(guó)這一時(shí)期的具體人口增長(zhǎng)模型為____________. (精確到0.001)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
(1)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;
(2)若, 且在上的最小值為-2,求m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)f(x)=,其中2<m<2,m∈Z,滿(mǎn)足:
(1)f(x)是區(qū)間(0,+∞)上的增函數(shù);
(2)對(duì)任意的x∈R,都有f(x) +f(x)=0.
求同時(shí)滿(mǎn)足條件(1)、(2)的冪函數(shù)f(x)的解析式,并求x∈[0,3]時(shí),f(x)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com