10.函數(shù)f(x)=x2+bx-1(b∈R).
(Ⅰ)若函數(shù)y=f(x)在[1,+∞)上單調(diào),求b的取值范圍;
(Ⅱ)若函數(shù)y=|f(x)|-2有四個零點,求b的取值范圍;
(Ⅲ)若函數(shù)y=|f(x)|在[0,|b|)上的最大值為g(b),求g(b)的表達(dá)式.

分析 (Ⅰ)函數(shù)f(x)=x2+bx-1的圖象是開口朝上,且以直線x=-$\frac{2}$為對稱軸的拋物線,若函數(shù)y=f(x)在[1,+∞)上單調(diào),則-$\frac{2}$≤1,解處b的取值范圍;
(Ⅱ)若函數(shù)y=|f(x)|-2有四個零點,則$1+\frac{^{2}}{4}<2$,解得b的取值范圍;
(Ⅲ)若函數(shù)y=|f(x)|在[0,|b|)上的最大值為g(b),結(jié)合二次函數(shù)的圖象和性質(zhì)分類討論,可得答案.

解答 解:(Ⅰ)∵函數(shù)f(x)=x2+bx-1的圖象是開口朝上,且以直線x=-$\frac{2}$為對稱軸的拋物線,…(2分)
∵y=f(x)在[1,+∞)上單調(diào),
∴-$\frac{2}$≤1,
即:b≥-2….(5分)
(Ⅱ)函數(shù)y=|f(x)|-2有四個零點,即函數(shù)y=|f(x)|與直線y=2有四個交點,
∵$f(x)={x^2}+bx-1={(x+\frac{2})^2}-1-\frac{b^2}{4}$的最小值為$-1-\frac{^{2}}{4}$
∴只需$1+\frac{^{2}}{4}<2$   即:b∈(-1,1)….(10分)
(Ⅲ)①當(dāng)b>0時,函數(shù)y=|f(x)|在[0,b)上單調(diào)增,
g(b)=max{|f(0)|,|f(b)|}=max{1,|2b2-1|}=$\left\{\begin{array}{l}1,0<b<1\\ 2^{2}-1,b≥1\end{array}\right.$…(12分)
②當(dāng)b<0時,|f(0)|=f(|b|)=1,$f(-\frac{2})=-1-\frac{b^2}{4}$
又$\left|f(-\frac{2})\right|=1+\frac{^{2}}{4}$>1,所以g(b)=$1+\frac{^{2}}{4}$…(14分)
綜上所述,g(b)=$\left\{\begin{array}{l}2^{2}-1,b≥1\\ 1,0<b<1\\ 1+\frac{^{2}}{4},b<0\end{array}\right.$;…(15分)

點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.根據(jù)下列條件分別求直線方程:
(1)已知直線過點P(2,2)且在兩坐標(biāo)軸的截距相等;
(2)過兩直線3x-2y+1=0和x+3y+4=0的交點,且垂直于直線x+3y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某市場調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價格P(元)和時間t(天)(t∈N)的關(guān)系如圖所示
(1)寫出銷售價格P(元)和時間t(天)的函數(shù)解析式;
(2)若日銷售量Q(件)與時間t(天)的函數(shù)關(guān)系是Q=-t+40(0≤t≤30,t∈N),求該商品的日銷售金額y(元)與時間t(天)的函數(shù)解析式;
(3)問該產(chǎn)品投放市場第幾天時,日銷售金額最高?最高值為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{3x+1}{x-2}$的定義域是(-∞,2)∪(2,+∞);值域是(-∞,3)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知一個三棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,正視圖和側(cè)視圖是全等的等腰三角形則此三棱錐的體積為:$\frac{4}{3}$cm3,此三棱錐的外接球表面積為:9πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=x2-2x+m在[3,+∞)上的最小值為1,則實數(shù)m的值為( 。
A.-3B.2C.-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“?x∈R,均有x2+sinx+1<0”的否定為( 。
A.?∈R,均有x2+sinx+1≥0B.?x∈R,使得x2+sinx+1<0
C.?x∈R,使得x2+sinx+1≥0D.?x∈R,均有x2+sinx+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義“規(guī)范01數(shù)列”{an}如下:{an}共有2m項,其中m項為0,m項為1,且對任意k≤2m,a1,a2…ak中0的個數(shù)不少于1的個數(shù).若m=4,則不同的“規(guī)范01數(shù)列”共有14個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知平面向量$\overrightarrow{a}$=(2cos2x,sin2x),$\overrightarrow$=(cos2x,-2sin2x),若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,要得到y(tǒng)=$\sqrt{3}$sin2x+cos2x的圖象,只需要將函數(shù)y=f(x)的圖象(  )
A.向左平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{12}$個單位D.向右平移$\frac{π}{12}$個單位

查看答案和解析>>

同步練習(xí)冊答案