10.若函數(shù)$f(x)=x(1-\frac{2}{{{e^x}+1}})$則函數(shù)f(x)的圖象關(guān)于(  )
A.原點(diǎn)軸對(duì)稱B.x軸對(duì)稱C.y軸對(duì)稱D.y=x對(duì)

分析 判斷f(x)的奇偶性,即可得出結(jié)論.

解答 解:f(x)的定義域?yàn)镽,
f(x)=x(1-$\frac{2}{{e}^{x}+1}$)=x•$\frac{{e}^{x}-1}{{e}^{x}+1}$
f(-x)=-x•$\frac{{e}^{-x}-1}{{e}^{-x}+1}$=-x•$\frac{1-{e}^{x}}{1+{e}^{x}}$=f(x),
∴f(x)是偶函數(shù),
∴f(x)的圖象關(guān)于y軸對(duì)稱,
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)奇偶性的判斷與性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)I是△ABC的內(nèi)心,其中AB=4,BC=6,AC=5,且$\overrightarrow{AI}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則曲線y=(m-n)x2的焦點(diǎn)坐標(biāo)為(  )
A.(-$\frac{1}{60}$,0)B.(0,$\frac{15}{4}$)C.(0,-$\frac{15}{4}$)D.($\frac{1}{60}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.小王同學(xué)有三支款式相同、顏色不同的圓珠筆,每支圓珠筆都有一個(gè)與之同顏色的筆帽,平時(shí)小王都將筆和筆帽套在一起,但偶爾會(huì)將筆和筆帽搭配成不同色.將筆和筆帽隨機(jī)套在一起,請(qǐng)問小王將兩支筆和筆帽的顏色混搭的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知兩直線l1:x-2y+4=0,l2:4x+3y+5=0.
(1)求直線l1與l2的交點(diǎn)P的坐標(biāo);
(2)若直線ax+2y-6=0與l1、l2可組成三角形,求實(shí)數(shù)a滿足的條件;
(3)設(shè)A(-1,-2),若直線l過點(diǎn)P,且點(diǎn)A到直線l的距離等于1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)交于A、B兩點(diǎn),M為線段AB的中點(diǎn),延長(zhǎng)OM交橢圓C于P.
(1)若直線l與直線OM的斜率之積為-$\frac{1}{4}$,且橢圓的長(zhǎng)軸為4,求橢圓C的方程;
(2)若四邊形OAPB為平行四邊形,求四邊形OAPB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知以F為焦點(diǎn)的拋物線C:y2=2px(p>0)上的兩點(diǎn)A,B滿足$\overrightarrow{AF}$=3$\overrightarrow{FB}$,若弦AB的中點(diǎn)到準(zhǔn)線的距離為$\frac{16}{3}$,則拋物線的方程為y2=8x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知方程x2+y2-2x+2y+F=0表示半徑為2的圓,則實(shí)數(shù)F=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等邊△ABC的邊長(zhǎng)為2,點(diǎn)E、F分別在邊CA、BA上且滿足$\overrightarrow{BE}$•$\overrightarrow{BC}$=2$\overrightarrow{BF}$•$\overrightarrow{BC}$=3,則$\overrightarrow{BE}$•$\overrightarrow{CF}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.有四個(gè)命題
①若$\overrightarrow p=x\overrightarrow a+y\overrightarrow b$,則$\overrightarrow p與\overrightarrow a、\overrightarrow b$共面
②若$\overrightarrow p與\overrightarrow a、\overrightarrow b$共面,則$\overrightarrow p=x\overrightarrow a+y\overrightarrow b$
③若$\overrightarrow{MN}=x\overrightarrow{MA}+Y\overrightarrow{MB}$,則M、N、A、B四點(diǎn)共面
④若M、N、A、B四點(diǎn)共面,則$\overrightarrow{MN}=x\overrightarrow{MA}+Y\overrightarrow{MB}$
其中真命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案