1.在△ABC中,AC=8,BC=5,面積S△ABC=10$\sqrt{3}$,則$\overrightarrow{BC}•\overrightarrow{CA}$=±20.

分析 由面積S△ABC=10$\sqrt{3}$,求出sin∠ACB,進(jìn)一步求出cos∠ACB,根據(jù)向量數(shù)量積的計(jì)算公式便可求出$\overrightarrow{BC}•\overrightarrow{CA}$.

解答 解:∵S△ABC=$\frac{1}{2}AC•BC•sin∠ACB$=$\frac{1}{2}×8×5sin∠ACB$=10$\sqrt{3}$,
∴$sin∠ACB=\frac{\sqrt{3}}{2}$.
∴$cos∠ACB=±\frac{1}{2}$.
∴$\overrightarrow{BC}•\overrightarrow{CA}$=BC•CA•cos∠ACB=±20.
故答案為:±20.

點(diǎn)評 本題考查了解三角形的運(yùn)算,及向量運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}的前n項(xiàng)和${S_n}=2{n^2}-3n({n∈{N^*}})$,則an=4n-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.橢圓的中心為坐標(biāo)原點(diǎn),長、短軸長之比為$\frac{2}{1}$,一個(gè)焦點(diǎn)是(0,-2),試求橢圓的離心率和橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知x8=a0+a1(x+1)+a2(x+1)2+…+a8(x+1)8,則a7=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將全體正整數(shù)ai,j從左向右排成一個(gè)直角三角形數(shù)陣:
按照以上排列的規(guī)律,若定義$f(i,j)={2^{{a_{i,j}}}}$,則log2$\frac{f(20,3)}{4}$=191.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sin(2ωx+φ)-1$(ω>0,|φ|<\frac{π}{2})$的最小正周期為$\frac{π}{2}$,圖象過點(diǎn)$(0,-\frac{1}{2})$.
(1)求ω、φ的值和f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若函數(shù)F(x)=g(x)+k在區(qū)間$[0,\frac{π}{2}]$上有且只有兩個(gè)不同零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.2017年實(shí)驗(yàn)中學(xué)要給三個(gè)班級補(bǔ)發(fā)8套教具,先將其分成3堆,其中一堆4個(gè),另兩堆每堆2個(gè),一共有多少種不同分堆方法(  )
A.C${\;}_{8}^{4}$C${\;}_{4}^{2}$C${\;}_{2}^{2}$B.C${\;}_{3}^{1}$C${\;}_{8}^{2}$
C.$\frac{{C}_{8}^{4}{C}_{4}^{2}}{{A}_{2}^{2}}$D.$\frac{{C}_{8}^{4}{C}_{4}^{2}{C}_{2}^{2}}{{A}_{3}^{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sinx=$\frac{3}{5}$,$x∈(\frac{π}{2},π)$,求cos2x和$tan(x+\frac{π}{4})$值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.tan23°+tan22°+tan23°tan22°=1.

查看答案和解析>>

同步練習(xí)冊答案