9.已知集合A={0,1,2,3},B={x|(x+1)(x-2)<0},則A∩B=( 。
A.{0,2}B.{1,0}C.{0,1,2,3}D.{-1,0,1,2,3}

分析 化簡(jiǎn)集合B,求出A∩B即可.

解答 解:集合A={0,1,2,3},
B={x|(x+1)(x-2)<0}={x|-1<x<2},
所以A∩B={0,1}.
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)關(guān)于x的函數(shù)f(x)=2cos2x-2acosx-(2a+1)的最小值為g(a).
(1)試用a寫出g(a)的表達(dá)式;
(2)試求g(a)=$\frac{1}{2}$時(shí)a的值,并求此時(shí)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計(jì)算$\int_0^2$f(x)dx,其中,f(x)=$\left\{\begin{array}{l}2x\begin{array}{l},{0≤x<1}\end{array}\\ 5\begin{array}{l},{\begin{array}{l}{\;\;\;1≤x≤2.}{\;}\end{array}}\end{array}\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在斜三角形△ABC中,A=45°,H是△ABC的垂心,λ$\overrightarrow{AH}$=$\frac{\overrightarrow{AB}}{tanC}$+$\frac{\overrightarrow{AC}}{tanB}$,則λ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知0<x<8,則(8-x)x的最大值是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知隨機(jī)變量X服從正態(tài)分布N(μ,σ2),且P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-σ<X≤μ+σ)=0.6826,若μ=4,σ=1,則P(5<X≤6)=0.1359.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=ex+ax-2,其中a∈R,若對(duì)于任意的x1,x2∈[1,+∞),且x1<x2,都有x2•f(x1)-x1•f(x2)<a(x1-x2)成立,則a的取值范圍是( 。
A.[1,+∞)B.[2,+∞)C.(-∞,1]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某縣農(nóng)民的月收入ξ服從正態(tài)分布N(1000,402),則此縣農(nóng)民中月收入在1000元到1080元間的人數(shù)的百分比為47.72%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$cos2x+sinxcosx.
(Ⅰ)求f($\frac{π}{6}$)的值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間;
(Ⅲ)若α∈(0,π),f($\frac{α}{2}$)=$\frac{1}{4}$+$\frac{{\sqrt{3}}}{2}$,求sin(α+$\frac{7π}{12}$)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案