18.已知函數(shù)y=xlnx,則該函數(shù)在其定義域內(nèi)( 。
A.無極值點(diǎn)B.極大值點(diǎn)是$\frac{1}{e}$
C.既有極大值點(diǎn)又有極小值點(diǎn)D.極小值點(diǎn)是$\frac{1}{e}$

分析 函數(shù)y=xlnx的定義域?yàn)椋?,+∞),y′=lnx+1,利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)y=xlnx在其定義域內(nèi)有極小值點(diǎn)是$\frac{1}{e}$.

解答 解:∵函數(shù)y=xlnx,∴函數(shù)的定義域?yàn)椋?,+∞),
y′=lnx+1,
由y′=lnx+1=0,得x=$\frac{1}{e}$,
當(dāng)x∈(0,$\frac{1}{e}$)時(shí),y′<0;當(dāng)x∈($\frac{1}{e}$,+∞)時(shí),y′>0,
∴函數(shù)y=xlnx在其定義域內(nèi)有極小值點(diǎn)是$\frac{1}{e}$.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的極值點(diǎn)的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)$f(x)={(x-6)^0}+\sqrt{\frac{1}{x-3}}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x≠6,x≠3}B.{x|x>3}C.{x|x>6}D.{x|3<x<6或x>6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法正確的是( 。
A.小于90°的角是銳角B.鈍角是第二象限的角
C.第二象限的角大于第一象限的角D.若角α與角β的終邊相同,那么α=β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C所對的邊分別為a,b,c,cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(1)求△ABC的面積S.
(2)若b+c=6,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點(diǎn)P(sin$\frac{5π}{4}$,cos$\frac{3π}{4}$)落在角θ的終邊上,且θ∈[0,2π),則θ是第三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\frac{3sinα-cosα}{2sinα+3cosα}$=$\frac{5}{7}$.
(1)求tan($\frac{π}{2}$-α)的值;
(2)求3cosα•sin(α+π)+2cos2(α+$\frac{π}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某同學(xué)上學(xué)途中必須經(jīng)過A,B,C,D四個(gè)交通崗,其中在A,B崗遇到紅燈的概率均為$\frac{1}{2}$,在C,D崗遇到紅燈的概率均為$\frac{1}{3}$.假設(shè)他在4個(gè)交通崗遇到紅燈的事件是相互獨(dú)立的,X表示他遇到紅燈的次數(shù).
(1)若X≥3,就會(huì)遲到,求張華不遲到的概率;
(2)求X的分布列及EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某福彩中心準(zhǔn)備發(fā)行一種面值為2元的福利彩票刮刮卡,設(shè)計(jì)方案如下:
①該福利彩票中獎(jiǎng)概率為0.2;
②每張中獎(jiǎng)彩票的中獎(jiǎng)獎(jiǎng)金有5元,10元和100元三種;
③顧客購買一張彩票,獲得10元獎(jiǎng)金的概率為0.08,獲得100元獎(jiǎng)金的概率為p.
(1)若某顧客每天都買一張?jiān)擃愋偷母@势,求其在?天才中獎(jiǎng)的概率;
(2)福彩中心為了能夠籌得資金資助福利事業(yè)持續(xù)發(fā)展,應(yīng)如何設(shè)定P的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在(1+x3)(1-x)10的展開式中,x5的系數(shù)是( 。
A.-297B.-207C.252D.297

查看答案和解析>>

同步練習(xí)冊答案