一個向量在直角坐標(biāo)系中的坐標(biāo)等于表示這個向量的有向線段的_________.

答案:終點坐標(biāo)減去它的起點坐標(biāo)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.
(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=
1
1
,并且矩陣M對應(yīng)的變換將點(-1,2)變換成(9,15).求矩陣M.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=2+2sinα
y=2cosα
(α是參數(shù)).
現(xiàn)以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,寫出曲線C的極坐標(biāo)方程.
(3)選修4-5:不等式選講
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先在答題卡上把所選題目對應(yīng)的題號填入括號中.
(1)選修4-2:矩陣與變換
已知二階矩陣M=
a1
3d
有特征值λ=-1及對應(yīng)的一個特征向量e1=
1
-3

(Ⅰ)求距陣M;
(Ⅱ)設(shè)曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2+t
y=t+1
(t
為參數(shù)),曲線P在以該直角坐標(biāo)系的原點O的為極點,x軸的正半軸為極軸的極坐標(biāo)系下的方程為p2-4pcosθ+3=0.
(Ⅰ)求曲線C的普通方程和曲線P的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C和曲線P的交點為A、B,求|AB|.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求實數(shù)t的取值范圍;
(Ⅱ)記t的最大值為T,若正實數(shù)a、b、c滿足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答卷紙指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
(B)(選修4-2:矩陣與變換)
二階矩陣M有特征值λ=8,其對應(yīng)的一個特征向量e=
1
1
,并且矩陣M對應(yīng)的變換將點(-1,2)變換成點(-2,4),求矩陣M2
(C)(選修4-4:坐標(biāo)系與參數(shù)方程)
已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點,極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈R).試在曲線C上一點M,使它到直線l的距離最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,設(shè)動點P到定點F(1,0)的距離與到定直線l:x=-1的距離相等,記P的軌跡為Γ.又直線AB的一個方向向量
d
=(1,2)
且過點(1,0),AB與Γ交于A、B兩點,求|AB|的長.

查看答案和解析>>

同步練習(xí)冊答案