已知函數(shù)f(x)=
2x-12x+1
,(1)判斷f(x)的奇偶性;(2)判斷并用定義證明f(x)在(-∞,+∞)上的單調(diào)性.
分析:(1)由函數(shù)f(x)=
2x-1
2x+1
的解析式,易判斷其定義域?yàn)镽,進(jìn)而判斷f(-x)與f(x)的關(guān)系,進(jìn)而根據(jù)函數(shù)奇偶性的定義,可得答案.
(2)任取R上兩個(gè)實(shí)數(shù)x1,x2,且x1<x2,作差判斷f(x1),f(x2)的大小,進(jìn)而根據(jù)函數(shù)單調(diào)性的定義得到答案.
解答:解:(1)∵函數(shù)f(x)=
2x-1
2x+1
的定義域?yàn)镽,
f(-x)=
2-x-1
2-x+1
=
1-2x
1+2x
=-f(x)
∴函數(shù)f(x)=
2x-1
2x+1
為奇函數(shù)
(2)任。-∞,+∞)上兩個(gè)實(shí)數(shù)x1,x2,且x1<x2,
則x1-x2<0,2x1+1>0,2x2+1>0,
則f(x1)-f(x2)=
2x1-1
2x1+1
-
2x2-1
2x2+1
=
2(2x1-2x2)
(2x1+1)•(2x2+1)
<0
即f(x1)<f(x2
∴f(x)是(-∞,+∞)上的增函數(shù);
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明,熟練掌握函數(shù)奇偶性的證明步驟及單調(diào)性證明的方法和步驟是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對(duì)稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對(duì)一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案