10.已知命題$p:?x∈R,x+\frac{1}{x}≥2$;命題$q:?x∈[0,\frac{π}{2}]$,使$sinx+cosx=\sqrt{2}$,則下列命題中為真命題的是( 。
A.¬p∧qB.p∧¬qC.¬p∧¬qD.p∧q

分析 分別判斷出p,q的真假,從而判斷出復(fù)合命題的真假即可.

解答 解:命題$p:?x∈R,x+\frac{1}{x}≥2$是假命題,比如a=-1,b=-1,
∵sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)≤$\sqrt{2}$,當(dāng)x=$\frac{π}{4}$時(shí)“=”成立,
故命題q為真命題,
所以?p∧q為真命題,
故選:A.

點(diǎn)評(píng) 本題考查了不等式以及三角函數(shù)的性質(zhì),考查復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=x+$\frac{a}{x}$(a為常數(shù),且a>0).
(1)是否存在常數(shù)a,使f(x)在(0,3]上單調(diào)遞減,且在[3,+∞)上單調(diào)遞增?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由;
(2)若關(guān)于x的不等式x+$\frac{a}{x}$-m≤0(m為常數(shù))在[1,4]上恒成立,求常數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=mlnx+(m-1)x.
(1)若f(x)存在最大值M,且M>0,求m的取值范圍.
(2)當(dāng)m=1時(shí),試問(wèn)方程xf(x)-$\frac{x}{{e}^{x}}$=-$\frac{2}{e}$是否有實(shí)數(shù)根,若有,求出所有實(shí)數(shù)根;若沒有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.log28+lg0.01+ln$\sqrt{e}+{2^{-1+{{log}_2}^3}}+lg\frac{5}{2}+2lg2-{(\frac{1}{2})^{-1}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x2+ax-lnx,a∈R
(1)若函數(shù)g(x)=$\frac{{x}^{2}}{2}$+ax-f(x),求g(x)在區(qū)間[$\frac{1}{e}$,e]上的最大值;
(2)令g(x)=f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知拋物線M的參數(shù)方程為$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$(t為參數(shù)),在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓N的方程ρ2-6ρsinθ=-8.求過(guò)拋物線M的焦點(diǎn)和圓心N的直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=Asin(ωx+φ)( A≠0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)在$x=\frac{2π}{3}$時(shí)取得最大值,且它的最小正周期為π,則( 。
A.f(x)的圖象過(guò)點(diǎn)(0,$\frac{1}{2}$)B.f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上是減函數(shù)
C.f(x)的一個(gè)對(duì)稱中心是$({\frac{5π}{12},0})$D.f(x)的圖象的一條對(duì)稱軸是x=$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.等比數(shù)列{an}中,已知a1=1,a4=27,則a3=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.點(diǎn)P從(1,0)點(diǎn)出發(fā),沿單位圓x2+y2=1逆時(shí)針?lè)较蜻\(yùn)動(dòng)$\frac{π}{3}$弧長(zhǎng)到達(dá)Q點(diǎn),則Q點(diǎn)坐標(biāo)為( 。
A.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$B.$(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$C.$(-\frac{1}{2},-\frac{{\sqrt{3}}}{2})$D.$(-\frac{{\sqrt{3}}}{2},\frac{1}{2})$

查看答案和解析>>

同步練習(xí)冊(cè)答案