如圖,在直角梯形ABCD中,AD⊥AB,BC⊥AB,AD=3,AB=4,BC=數(shù)學公式,點E在線段AB的延長線上.曲線段DE上任一點到A、B兩點的距離之和都相等.
(1)建立適當?shù)闹苯亲鴺讼,求曲線段DE的方程;
(2)試問:過點C能否作一條直線l與曲線段DE相交于兩點M、N,使得線段MN以C為中點?若能,則求直線l的方程;
若不能,則說明理由.

解:(1)以直線AB為x軸,線段AB的中點為原點,
建立如圖所示的平面直角坐標系,
.…(1分)
∵AD+BD=3+5=8>AB,
∴依題意,曲線段DE是以A、B為左、右焦點,
長軸長為8的橢圓的一部分. (3分)
故曲線段DE的方程為. (6分)
(2)設這樣的直線l存在,
由直線x=2與曲線段DE只有一個交點(0,3),
知直線l存在斜率,設直線l的方程為,
,
將其代入
①(9分)
設M(x1,y1),N(x2,y2),
則由,知x1+x2=4,

解得.(12分)
時,方程①化為:x2-4x=0,
解得x1=0,x2=4.
,適合條件.
故直線l存在,其方程為,
.(14分)
分析:(1)以直線AB為x軸,線段AB的中點為原點,建立平面直角坐標系,由AD+BD=3+5=8>AB,知曲線段DE是以A、B為左、右焦點,長軸長為8的橢圓的一部分.由此能求出曲線段DE的方程.
(2)設這樣的直線l存在,由直線x=2與曲線段DE只有一個交點(0,3),設直線l的方程為 ,將其代入.由此能求出直線l的方程.
點評:本題主要考查橢圓標準方程,簡單幾何性質,直線與橢圓的位置關系.考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉化思想.對數(shù)學思維的要求比較高,有一定的探索性.綜合性強,難度大,易出錯.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a.
(Ⅰ)求證:平面SAB⊥平面SAD;
(Ⅱ)設SB的中點為M,且DM⊥MC,試求出四棱錐S-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.點E、F分別是PC、BD的中點,現(xiàn)將△PDC沿CD折起,使PD⊥平面ABCD,
(1)求證:EF∥平面PAD;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,動點P在BCD內運動(含邊界),設
AP
AD
AB
,則α+β的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P為CD的中點,則
PA
PB
的值為
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分別為線段CD、AB上的點,且EF∥AD.將梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD與平面ADEF所成角正切值為
2
2

(Ⅰ)求證:BC⊥平面BDE;
(Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

查看答案和解析>>

同步練習冊答案