分析 (Ⅰ)連結(jié)AC、BD,交于點O,連結(jié)OE,則OE∥PB,由此能證明PB∥平面AEC.
(Ⅱ)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,利用向量法能求出二面角D-AE-C的余弦值.
解答 證明:(Ⅰ)連結(jié)AC、BD,交于點O,連結(jié)OE,
∵底面ABCD為矩形,∴O是BD中點,
∵E為PD的中點,∴OE∥PB,
∵PB?平面AEC,OE?平面AEC,
∴PB∥平面AEC.
(Ⅱ)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,
∵AP=AB=1,AD=$\sqrt{3}$,
∴A(0,0,0),C(1,$\sqrt{3}$,0),P(0,0,1),D(0,$\sqrt{3}$,0),E(0,$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),
$\overrightarrow{AC}$=(1,$\sqrt{3}$,0),$\overrightarrow{AE}$=(0,$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),
設(shè)平面AEC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=x+\sqrt{3}y=0}\\{\overrightarrow{n}•\overrightarrow{AE}=\frac{\sqrt{3}}{2}y+\frac{1}{2}z=0}\end{array}\right.$,取x=3,得$\overrightarrow{n}$=(3,-$\sqrt{3}$,3),
又平面DEA的法向理$\overrightarrow{m}$=(1,0,0),
設(shè)二面角D-AE-C的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{\sqrt{21}}$=$\frac{\sqrt{21}}{7}$.
∴二面角D-AE-C的余弦值為$\frac{\sqrt{21}}{7}$.
點評 本題考查線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)與(1,+∞) | B. | (-1,1) | C. | (0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com