已知數(shù)列滿足,,()
(1)若,數(shù)列單調(diào)遞增,求實數(shù)的取值范圍;
(2)若,試寫出對任意成立的充要條件,并證明你的結(jié)論.
(1)∪;(2)充要條件為.
【解析】
試題分析:本題主要考查數(shù)列的遞推公式、數(shù)列的單調(diào)性、充要條件、數(shù)學(xué)歸納法等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、計算能力、邏輯推理能力.第一問,數(shù)列單調(diào)遞增,將已知條件代入,得到所滿足條件,即需要滿足的條件,即得到a的取值范圍,第二問,必要性:法一:由直接解出,法二:利用已知的遞推公式得到與的關(guān)系,再利用配方法得到的最小值,充分性:用數(shù)學(xué)歸納法證明.
試題解析:(1)若,則,
由,
得或,所以只需或.
所以實數(shù)的取值范圍為∪. 6分
(2)對任意成立的充要條件為.必要性:由,解出;
(另【解析】
假設(shè),得,令,,可得:,即有.) 8分
充分性:數(shù)學(xué)歸納法證明:時,對一切,成立.
證明:(1)顯然時,結(jié)論成立;
(2)假設(shè)時結(jié)論成立,即,
當(dāng)時,.
考察函數(shù),,
①若,由,知在區(qū)間上單調(diào)遞增.由假設(shè).
②若,對總有,
則由假設(shè)得.
所以,時,結(jié)論成立,
綜上可知:當(dāng)時,對一切,成立.
故對任意成立的充要條件是.
考點:數(shù)列的遞推公式、數(shù)列的單調(diào)性、充要條件、數(shù)學(xué)歸納法.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省東營市高三4月統(tǒng)一質(zhì)量檢測考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的部分圖像如圖所示,則的解析式可以是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省皖北協(xié)作區(qū)高三年級聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
若且,則“”是“”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省皖北協(xié)作區(qū)高三年級聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)正項等比數(shù)列的前項積為,若,則=__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省皖北協(xié)作區(qū)高三年級聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)是不同的直線,是不同的平面,有以下四個命題:
①若則
②若則
③若則
④若則
其中真命題的序號是( )
A、①③ B、①④ C、②③ D、②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知向量,,函數(shù),.
(1)求函數(shù)的圖像的對稱中心坐標(biāo);
(2)將函數(shù)圖像向下平移個單位,再向左平移個單位得函數(shù)的圖像,試寫出的解析式并作出它在上的圖像.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知點、,直線與線段相交,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
甲、乙兩位同學(xué)參加2014年的自主招生考試,下火車后兩人共同提起一個行李包(如圖所示).設(shè)他們所用的力分別為,行李包所受重力為,若,則與的夾角的大小為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省合肥市高三第二次教學(xué)質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:選擇題
若全集,且,則集合的真子集共有( )
A.3個 B.4個 C.7個 D.8個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com