分析 (Ⅰ)設P(x,y),由已知平面上動點P到點F(1,0)的距離等于它到直線x=-1的距離,利用拋物線的定義,可求點P的軌跡方程;
(Ⅱ)設A,B兩點坐標分別為(x1,y1),(x2,y2),設直線l1的方程為y=k(x-1)(k≠0),與拋物線方程聯(lián)立,利用韋達定理可求點P的坐標為(1+$\frac{2}{{k}^{2}}$,$\frac{2}{k}$).同理可得點的坐標為(1+2k2,-2k),進而可確定直線PQ的方程,即可得到結論.
解答 (Ⅰ)解:設P(x,y),由已知平面上動點P到點F(1,0)的距離等于它到直線x=-1的距離,
∴點P滿足拋物線定義,點P的軌跡為焦點在x軸正半軸的拋物線,p=2,
∴點P的軌跡方程為y2=4x. …(5分)
(Ⅱ)證明:設A,B兩點坐標分別為(x1,y1),(x2,y2),則
由題意可設直線l1的方程為y=k(x-1)(k≠0),
與拋物線方程,聯(lián)立化簡得k2x2-(2k2+4)x+k2=0.
△=(2k2+4)2-4k4=16k2+16>0,x1+x2=2+$\frac{4}{{k}^{2}}$y1+y2=k(x1+x2-2)=$\frac{4}{k}$.
所以點P的坐標為(1+$\frac{2}{{k}^{2}}$,$\frac{2}{k}$).
由題知,直線l2的斜率為-$\frac{1}{k}$,同理可得點的坐標為(1+2k2,-2k).
當k≠±1時,有1+$\frac{2}{{k}^{2}}$≠1+2k2,此時直線PQ的斜率kPQ=$\frac{k}{1-{k}^{2}}$.
所以,直線PQ的方程為y+2k=$\frac{k}{1-{k}^{2}}$(x-1-2k2),
整理得yk2+(x-3)k-y=0,于是,直線PQ恒過定點E(3,0);
當k=±1時,直線PQ的方程為x=3,也過點E(3,0).
綜上所述,直線PQ恒過定點E(3,0). …(12分)
點評 本題考查圓錐曲線和直線的位置關系和綜合應用,具有一定的難度,解題的關鍵是直線與拋物線的聯(lián)立,確定直線PQ的方程.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{21}{8}$ | B. | $\frac{21}{8}$ | C. | -9 | D. | 9 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 終邊在x軸上角的集合是{α|α=kπ,k∈Z} | |
B. | 終邊在y軸上角的集合是$\{α|α=\frac{π}{2}+kπ,k∈Z\}$ | |
C. | 終邊在坐標軸上的角的集合是$\{α|α=k•\frac{π}{2},k∈Z\}$ | |
D. | 終邊在直線y=-x上角的集合是 $\{α|α=\frac{π}{4}+2kπ,k∈Z\}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com