(I)證明:當a=0時,f(x)=-e
x+x+1,則f′(x)=-e
x+1
令f′(x)=0,可得x=0
令f′(x)<0,可得x<0,令f′(x)>0,可得x>0
∴函數(shù)f(x)在(-∞,0)上單調遞增,在(0,+∞)單調遞減
∴f(x)
max=f(0)=0
∴f(x)≤0;
(II)f′(x)=-(ax+a-1)e
x+1-a,f(0)=f′(0)=0,
設g(x)=f′(x),則g′(x)=(ax+2a-1)e
x,
①a≤0,x∈(0,+∞)時,g′(x)<0,∴g(x)在(0,+∞)上為減函數(shù),
∵f′(0)=0,∴f′(x)<0,∴f(x)在(0,+∞)上為減函數(shù),
∴f(x)<f(0)=0與已知矛盾;
②當0<a<
,x∈(0,
)時,g′(x)<0,則g(x)在(0,
)上為減函數(shù),此時f′(x)<0,∴f(x)在(0,
)上為減函數(shù),∴f(x)<f(0)=0與已知矛盾;
③當a≥
,x∈(0,+∞)時,g′(x)>0,即f′(x)在(0,+∞)上為增函數(shù),
∴f′(x)≥f′(0)=0
∴f(x)在(0,+∞)上為增函數(shù),∴f(x)>f(0)=0,不等式成立
綜上,a≥
.
分析:(I)求導數(shù),確定函數(shù)的單調性,求得函數(shù)的最大值,即可證得結論;
(II)f′(x)=-(ax+a-1)e
x+1-a,f(0)=f′(0)=0,設g(x)=f′(x),則g′(x)=(ax+2a-1)e
x,分類討論,確定函數(shù)的單調性,即可求a的取值范圍.
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調性與最值,考查分類討論的數(shù)學思想,屬于中檔題.