已知函數(shù)f(x)=2cos2x+2sinxcosx
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈[0,
π
2
],求f(x)的最大值和最小值.
考點(diǎn):兩角和與差的正弦函數(shù),正弦函數(shù)的定義域和值域
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)將函數(shù)f(x)進(jìn)行化簡,利用三角函數(shù)的圖象和性質(zhì)即可求函數(shù)f(x)的最小正周期;
(2)根據(jù)三角函數(shù)的圖象和性質(zhì)即可求函數(shù)的最值.
解答: 解:(1)f(x)=2cos2x+2sinxcosx=1+cos2x+sin2x=1+
2
sin(2x+
π
4
),
則函數(shù)f(x)的最小正周期T=
2

(2)∵0≤x≤
π
2
,
π
4
≤2x+
π
4
4
,
即-
2
2
≤sin(2x+
π
4
)≤1,
-1≤
2
sin(2x+
π
4
)≤
2

即-1≤
2
sin(2x+
π
4
)≤
2
,
0≤1+
2
sin(2x+
π
4
)≤1+
2
,
故函數(shù)的最大值為1+
2
,最小值為0.
點(diǎn)評:本題主要考查三角函數(shù)的圖象和性質(zhì),利用輔助角公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y2=2px(p>0)上點(diǎn)(2,a)到焦點(diǎn)F的距離為3,直線l:my=x+t(t≠0)交拋物線C于A,B兩點(diǎn),且滿足OA⊥OB.圓E是以(-p,p)為圓心,p為直徑的圓.
(1)求拋物線C和圓E的方程;
(2)設(shè)點(diǎn)M為圓E上的任意一動點(diǎn),求當(dāng)動點(diǎn)M到直線l的距離最大時的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊為a,b,c,且A=60°,5sinB=3sinC
(1)若△ABC的面積為
15
3
4
,求a,b,c的長;
(2)在(1)的條件下,若把三角形的每條邊都增加相同的長度x(x>0),則△ABC是什么三角形?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b為實數(shù),已知不等式組
x+y≥0
x+y≤6
2x-y≥0
y≥ax-b
表示的平面區(qū)域是一個菱形,則ab=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱錐D-ABC中,底面三角形ABC的面積為4
3
,A1、B1、C1是棱DA、DB、DC的中點(diǎn),E、F在線段A1B1、A1C1上,且EF∥B1C1.則△AEF和四邊形EFCB在底面ABC上的射影的面積之和為( 。
A、
2
3
3
B、
4
3
3
C、
8
3
3
D、與EF位置有關(guān),總面積不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+1-3a,x<1
x2-2ax,x≥1
,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A1、A2分別為橢圓C:
x2
9
+
y2
5
=1的左右頂點(diǎn),點(diǎn)P為橢圓C上任意一點(diǎn),則
PA1
PA2
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-2ax+b,當(dāng)x=-1時,f(x)取最小值-8,記集合A={x|f(x)>0},B={x||x-t|≤1}
(Ⅰ)當(dāng)t=1時,求(∁RA)∪B;
(Ⅱ)設(shè)命題P:A∩B≠∅,若¬P為真命題,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若p為非負(fù)實數(shù),隨機(jī)變量ξ的概率分布為圖表所示,則Dξ的最大值為
 

ξ012
P
1
2
-P
P
1
2

查看答案和解析>>

同步練習(xí)冊答案