精英家教網 > 高中數學 > 題目詳情
(2009•濱州一模)設函數f(x)=p(x-
1x
)-2lnx,g(x)=x2
(I)若直線l與函數f(x),g(x)的圖象都相切,且與函數f(x)的圖象相切于點(1,0),求實數p的值;
(II)若f(x)在其定義域內為單調函數,求實數p的取值范圍.
分析:(I)分別求出f(x),g(x)的導數,利用直線l與函數f(x),g(x)的圖象都相切,求出它們導數之間的關系.
(II)f(x)在其定義域內為單調函數,則說明導數f'(x)>0,或f'(x)<0,恒成立.
解答:解:(Ⅰ)方法一:∵f′(x)=p+
p
x2
-
2
x
,∴f'(1)=2p-2.
設直線,并設l與g(x)=x2相切于點M(x0,y0
∵g'(x)=2x,∴2x0=2p-2,解得
x0=p-1,y0=(p-1)2
代入直線l方程解得p=1或p=3.
方法二:將直線方程l代入y=x2得2(p-1)(x-1)=0,
∴△=4(p-1)2-8(p-1)=0,
解得p=1或p=3.
(Ⅱ)∵f′(x)=p+
p
x2
-
2
x
=
px2-2x+p
x2
..
①要使f(x)為單調增函數,f'(x)≥0在(0,+∞)恒成立,
即px2-2x+p≥0在(0,+∞)恒成立,即p≥
2x
x2+1
=
2
x+
1
x
在(0,+∞)恒成立,
2
x+
1
x
≤1
,所以當p≥1,此時f(x)在(0,+∞)為單調增函數;   
②要使f(x)為單調減函數,須f'(x)<0在(0,+∞)恒成立,
即在(0,+∞)恒成立,即p≤
2x
x2+1
,(0,+∞)恒成立,又
2x
x2+1
≥0
,所以p≤0.當p≤0時,f(x)在(0,+∞)為單調減函數.
綜上,若f(x)在(0,+∞)為單調函數,則p的取值范圍為p≥1或p≤0.
點評:本題考查導數的應用,要正確理解函數單調性與導數之間的關系.當函數函數單調遞增時,得f'(x)≥0,不能漏掉等號.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2009•濱州一模)由曲線y=x2和直線x=0,x=1,以及y=0所圍成的圖形面積是
1
3
1
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•濱州一模)已知a是實數,
a+i
1-i
是純虛數,則a等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•濱州一模)定義運算:
.
a1a2
b1b2
.
=a1b2-a2b1
,將函數f(x)=
.
3
sinx
1cosx
.
的圖象向左平移t(t>0)個單位,所得圖象對應的函數為偶函數,則t的最小值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•濱州一模)等差數列{an}中,a5+a11=30,a4=7,則a12的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•濱州一模)已知、B、C分別為△ABC的三邊a、b、c所對的角,向量
m
=(sinA,sinB)
,
n
=(cosB,-cosA)且
m
n
=2C

(Ⅰ)求角C的大;
(Ⅱ)若sinA,sinC,sinB成等差數列,且
CA
•(
AB
-
AC
)=18
,求邊c的長.

查看答案和解析>>

同步練習冊答案