f(x)是定義在R上的函數(shù),且對任意的x、y都有f(x+y)=f(x)+f(y)-1成立.當(dāng)x>0時,f(x)>1.
(1)若f(4)=5,求f(2);
(2)證明:f(x)在R上是增函數(shù);
(3)若f(4)=5,解不等式f(3m2-m-2)<3.
考點:抽象函數(shù)及其應(yīng)用,函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)f(4)=f(2)+f(2)-1,即可求出f(2)的值,
(2)要判斷函數(shù)的增減性,就是在自變量范圍中任意取兩個x1<x2∈R,判斷出f(x1)與f(x2)的大小即可知道增減性.
(3)f(3m2-m-2)<3,得f(3m2-m-2)<f(2),由(2)知,f(x)是R上的增函數(shù),得到3m2-m-2<2,求出解集即可.
解答: 解:(1)f(4)=f(2)+f(2)-1=5,解得f(2)=3
(2)任取x1,x2∈R,且x1<x2,則x2-x1>0,
∵x>0時,f(x)>1.
∴f(x2-x1)>1
∴f(x2)=f(x2-x1+x1)=f(x2-x1)+f(x1)-1>f(x1
∴f(x2)>f(x1),
∴f(x)是R上的增函數(shù).
(3)∵由不等式f(3m2-m-2)<3,
得f(3m2-m-2)<f(2),
由(2)知,f(x)是R上的增函數(shù),
∴3m2-m-2<2,
∴3m2-m-4<0,
∴-1<m<
4
3
,
∴不等式f(3m2-m-2)<3的解集為(-1,
4
3
).
點評:考查學(xué)生掌握判斷函數(shù)奇偶性能力和判斷函數(shù)增減性的能力,靈活運用題中已知條件的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三個數(shù)a=12(16),b=25(7),c=33(4),將它們按由小到大的順序排列為( 。
A、c<a<b
B、a<c<b
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使不等式
x+2
x-1
≤0
成立的充分不必要條件是( 。
A、{x|-2≤x≤1}
B、{x|-2≤x<1}
C、{x|x≤-2或x>1}
D、{x|-2<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知a1=-9,a2+a8=-2,當(dāng)Sn取得最小值時,n=( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=|cosx+sinx|.
(1)畫出函數(shù)在x∈[-
π
4
4
]上的簡圖;
(2)寫出函數(shù)的最小正周期和在[-
π
4
,
4
]上的單調(diào)遞增區(qū)間;試問:當(dāng)x在R上取何值時,函數(shù)有最大值?最大值是多少?
(3)若x是△ABC的一個內(nèi)角,且y2=1,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量 
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
),記  f(x)=
m
n

(Ⅰ)若 f(a)=
3
2
,求cos(
3
-a)的值;
(Ⅱ)將函數(shù) y=f(x)的圖象向右平移
3
個單位得到y(tǒng)=g(x)的圖象,若函數(shù)y=g(x)-k在[0,
3
]上有零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3-x2+2ax在區(qū)間(-∞,1)內(nèi)遞增,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=-x2+4x-3的定義域為[0,t],值域為[-3,1],則t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}的首項為-10、公差為2,則它的前n項Sn的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案