【題目】某校為了解A,B兩班學生手機上網(wǎng)的時長,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周手機上網(wǎng)的時長作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).

(1) 試估計哪個班級學生平均上網(wǎng)的時間較長。

(2)從A班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為b,求a>b的概率.

【答案】(1)B班;(2)

【解析】

(1)直接計算兩班的上網(wǎng)時間的平均值,再比較即得解;(2)直接利用古典概型的概率公式求解.

(1)A班樣本數(shù)據(jù)的平均值為(9+11+14+20+31)=17.

由此估計A班學生每周平均上網(wǎng)時間為17小時;

B班樣本數(shù)據(jù)的平均值為(11+12+21+25+26)=19,

由此估計B班學生每周平均上網(wǎng)時間較長.

(2)A班的樣本數(shù)據(jù)中不超過19的數(shù)據(jù)a有3個,分別為9,11,14,

B班的樣本數(shù)據(jù)中不超過21的數(shù)據(jù)b也有3個,分別為11,12,21,

從A班和B班的樣本數(shù)據(jù)中各隨機抽取一個共有9種不同情況,

分別為(9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),

其中a>b的情況有(14,11),(14,12)兩種,

故a>b的概率p=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩名運動員互不影響地進行四次設計訓練,根據(jù)以往的數(shù)據(jù)統(tǒng)計,他們設計成績均不低于8環(huán)(成績環(huán)數(shù)以整數(shù)計),且甲乙射擊成績(環(huán)數(shù))的分布列如下:

(I)求, 的值;

(II)若甲乙兩射手各射擊兩次,求四次射擊中恰有三次命中9環(huán)的概率;

(III)若兩個射手各射擊1次,記兩人所得環(huán)數(shù)的差的絕對值為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列函數(shù)的奇偶性:

1;

2;

3

4;

5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為1,線段上有兩個動點,且,現(xiàn)有如下四個結論:

;平面;

三棱錐的體積為定值;異面直線所成的角為定值,

其中正確結論的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

(1)求的單調區(qū)間和極值;

(2)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為鼓勵居民節(jié)約用水,某市自來水公司對全市用戶采用分段計費的方式計算水費,收費標準如下:不超過的部分為2.20/;超過不超過的部分為2.80/;超過部分為3.20/.

1)試求居民月水費y(元)關于用水量的函數(shù)關系式;

2)某戶居民4月份用水,應交水費多少元?

3)若有一戶居民5月份水費為57.20元,請問該戶居民5月份用水多少?

4)若某戶居民6月份、7月份共用水,且6月份水費比7月份水費少12元,則該戶居民6、7月份各用水多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某物流公司欲將一批海產(chǎn)品從A地運往B地,現(xiàn)有汽車、火車、飛機三種運輸工具可供選擇,這三種工具的主要參考數(shù)據(jù)如下:

運輸工具

途中速度(

途中費用(元/

裝卸時間(

裝卸費用(元/

汽車

50

80

2

200

火車

100

40

3

400

飛機

200

200

3

800

若這批海產(chǎn)品在運輸過程中的損耗為300/,問采用哪種運輸方式比較好,即運輸過程中的費用與損耗之和最小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】作出下列函數(shù)的大致圖像,并寫出函數(shù)的單調區(qū)間和值域:

1; 2;(3

4;(5;(6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設甲,乙兩組的研發(fā)是相互獨立的.

(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;

(2)若新產(chǎn)品研發(fā)成功,預計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案