精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)如圖,在以點O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點,∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動點M的軌跡,且曲線C過點P.

(Ⅰ)建立適當的平面直角坐標系,求曲線C的方程;

(Ⅱ)設過點D的直線l與曲線C相交于不同的兩點E、F,求直線l斜率的取值范圍.

              

解:(Ⅰ)解法1:以O為原點,ABOD所在直線分別為x軸、y軸,建立平面直角坐標系,則A(-2,0),B(2,0),D(0,2),P),依題意得||MA|-|MB||=|PA|-|PB|=<|AB|=4.∴曲線C是以原點為中心,AB為焦點的雙曲線.設實半軸長為a,虛半軸長為b,半焦距為c,則c=2,2a=2,∴a2=2,b2=c2a2=2.

∴曲線C的方程為.

解法2:同解法1建立平面直角坐標系,則依題意可得||MA|-|MB||=|PA|-|PB|<|AB|=4.∴曲線C是以原點為中心,A、B為焦點的雙曲線.設雙曲線的方程為>0,b>0).

則由  解得a2=b2=2,∴曲線C的方程為

(Ⅱ)解法1:依題意,可設直線l的方程為ykx+2,代入雙曲線C的方程并整理得(1-k2x2-4kx6=0.                      ①∵直線l與雙曲線C相交于不同的兩點E、F,∴     ∴直線l的斜率的取值范圍為(-,-1)∪(-1,1)∪(1,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案