拋物線頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線=1(a>0,b>0)的一個(gè)焦點(diǎn),并與雙曲線實(shí)軸垂直,已知拋物線與雙曲線的一個(gè)交點(diǎn)為,求拋物線與雙曲線方程.

 

4x2-=1

【解析】由題設(shè)知,拋物線以雙曲線的右焦點(diǎn)為焦點(diǎn),準(zhǔn)線過雙曲線的左焦點(diǎn),∴p=2c,設(shè)拋物線方程為y2=4c·x.

∵拋物線過點(diǎn),∴6=4c·.∴c=1,故拋物線方程為y2=4x.又雙曲線=1過點(diǎn),∴=1.又a2+b2=c2=1,∴=1.∴a2=或a2=9(舍).∴b2=,故雙曲線方程為4x2-=1

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第6課時(shí)練習(xí)卷(解析版) 題型:解答題

一盒中裝有零件12個(gè),其中有9個(gè)正品,3個(gè)次品,從中任取一個(gè),如果每次取出次品就不再放回去,再取一個(gè)零件,直到取得正品為止.求在取得正品之前已取出次品數(shù)的期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

某班級有男生12人、女生10人,現(xiàn)選舉4名學(xué)生分別擔(dān)任班長、副班長、團(tuán)支部書記和體育班委,則至少兩名男生當(dāng)選的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知(2x+xlgx)8的展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,求x.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

在(x-)10的展開式中,x6的系數(shù)是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時(shí)練習(xí)卷(解析版) 題型:解答題

已知拋物線D的頂點(diǎn)是橢圓C:=1的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合.

(1)求拋物線D的方程;

(2)過橢圓C右頂點(diǎn)A的直線l交拋物線D于M、N兩點(diǎn).

①若直線l的斜率為1,求MN的長;

②是否存在垂直于x軸的直線m被以MA為直徑的圓E所截得的弦長為定值?如果存在,求出m的方程;如果不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時(shí)練習(xí)卷(解析版) 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在直線2x-y-4=0上,求拋物線的標(biāo)準(zhǔn)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時(shí)練習(xí)卷(解析版) 題型:解答題

雙曲線C與橢圓=1有相同的焦點(diǎn),直線y=x為C的一條漸近線.求雙曲線C的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第6課時(shí)練習(xí)卷(解析版) 題型:解答題

若橢圓=1的焦距為2,求橢圓上的一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和.

 

查看答案和解析>>

同步練習(xí)冊答案