已知函數(shù)f(x)=x|x-a|+2x.
(1)若a=4時(shí),求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)求所有的實(shí)數(shù)a,使得對(duì)任意x∈[1,2]時(shí),函數(shù)f(x)的圖象恒在函數(shù)g(x)=2x+1圖象的下方;
(3)若存在a∈[-4,4],使得關(guān)于x的方程f(x)=tf(a)有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.
分析:(1)a=4時(shí),f(x)=
x2-2x,x≥4
6x-x2,x<4
,由此能求出f(x)的單調(diào)減區(qū)間.
(2)由題意得對(duì)任意的實(shí)數(shù)x∈[1,2],f(x)<g(x)恒成立,即x|x-a|<1,當(dāng)x∈[1,2]恒成立,由此能求出所有的實(shí)數(shù)a.
(3)當(dāng)-2≤a≤2時(shí),f(x)在R上是增函數(shù),則關(guān)于x的方程f(x)=tf(a)不可能有三個(gè)不等的實(shí)數(shù)根;當(dāng)a∈(2,4]時(shí)和當(dāng)a∈[-4,-2)時(shí),等價(jià)轉(zhuǎn)化f(x)的表達(dá)式,利用函數(shù)的單調(diào)性能得到實(shí)數(shù)t的取值范圍.
解答:解:(1)a=4時(shí),f(x)=x|x-4|+2x=
x2-2x,x≥4
6x-x2,x<4

當(dāng)x≥4時(shí),f(x)=x2-2x的增區(qū)間是[4,+∞),無(wú)減區(qū)間.
當(dāng)x<4時(shí),f(x)=6x-x2增區(qū)間是(-∞,3],減區(qū)間是[3,4],
綜上所述,f(x)的單調(diào)減區(qū)間為[3,4].…(4分)
(2)由題意得對(duì)任意的實(shí)數(shù)x∈[1,2],f(x)<g(x)恒成立,
即x|x-a|<1,當(dāng)x∈[1,2]恒成立,即|x-a|<
1
x
,-
1
x
<x-a<
1
x

x-
1
x
<a<x+
1
x
,故只要x-
1
x
<a,且a<x+
1
x
在x∈[1,2]上恒成立即可,
在x∈[1,2]時(shí),只要x-
1
x
的最大值小于a,
且x+
1
x
的最小值大于a即可,…(6分)
而當(dāng)x∈[1,2]時(shí),(x-
1
x
)′=1+
1
x2
>0,x-
1
x
為增函數(shù),(x-
1
x
)max=
3
2
;
當(dāng)x∈[1,2]時(shí),(x+
1
x
)′=1-
1
x2
>0,x+
1
x
為增函數(shù),(x+
1
x
min=2,
所以
3
2
<a<2
.…(10分)
(3)當(dāng)-2≤a≤2時(shí),f(x)在R上是增函數(shù),
則關(guān)于x的方程f(x)=tf(a)不可能有三個(gè)不等的實(shí)數(shù)根,…(11分)
則當(dāng)a∈(2,4]時(shí),由f(x)=
x2+(2-a)x,x≥a
-x2+(2+a)x,x<a

得x≥a時(shí),f(x)=x2+(2-a)x,對(duì)稱軸x=
a-2
2
<a
,
則f(x)在x∈[a,+∞)為增函數(shù),此時(shí)f(x)的值域?yàn)閇f(a),+∞)=[2a,+∞),
x<a時(shí),f(x)=-x2+(2+a)x,對(duì)稱軸x=
a+2
2
<a
,
則f(x)在x∈(-∞,
a+2
2
]為增函數(shù),此時(shí)f(x)的值域?yàn)椋?∞,
(a+2)2
4
],
f(x)在x∈[
a+2
2
,a
)為減函數(shù),此時(shí)f(x)的值域?yàn)椋?a,
(a+2)2
4
];
由存在a∈(2,4],方程f(x)=tf(a)=2ta有三個(gè)不相等的實(shí)根,
則2ta∈(2a,
(a+2)2
4
),
即存在a∈(2,4],使得t∈(1,
(a+2)2
8a
)即可,
令g(a)=
(a+2)2
8a
=
1
8
(a+
4
a
+4)

只要使t<(g(a))max即可,而g(a)在a∈(2,4]上是增函數(shù),
(g(a))max=g(4)=
9
8
,
故實(shí)數(shù)t的取值范圍為(1,
9
8
);…(15分)
同理可求當(dāng)a∈[-4,-2)時(shí),t的取值范圍為(1,
9
8
);
綜上所述,實(shí)數(shù)t的取值范圍為(1,
9
8
).…(17分)
點(diǎn)評(píng):本題考查函數(shù)恒成立問題的應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強(qiáng),難度大,有一定的探索性,對(duì)數(shù)學(xué)思維能力要求較高,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案