11.有以下四個命題
①過球面上任意兩點只能作球的一個大圓
②球的任意兩個大圓的交點的連線是球的直徑
③用不過球心的截面截球,球心和截面圓心的連線垂直于截面
④球是與定點的距離等于定長的所有點的集合
則命題中正確的是②③  (將正確的命題序號填在橫線上)

分析 根據(jù)球的性質分別進行判斷即可.

解答 解:①當兩點為球的直徑的兩個端點時,過球面上任意兩點可以作無數(shù)的球大圓,故①錯誤,
②球的任意兩個大圓的交點的連線是球的直徑,正確,
③用不過球心的截面截球,球心和截面圓心的連線垂直于截面,正確,
④在空間中,滿足到定點的距離等于定長的所有點的集合為球面,故球是與定點的距離等于定長的所有點的集合,錯誤,
故正確是②③,
故答案為:②③

點評 本題主要考查命題的真假判斷,涉及球的性質,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.對于序列A0:a0,a1,a2,…,an(n∈N*),實施變換T得序列A1:a1+a2,a2+a3,…,an-1+an,記作A1=T(A0):對A1繼續(xù)實施變換T得序列A2=T(A1)=T(T(A0)),記作A2=T2(A0);…;An-1=Tn-1(A0).最后得到的序列An-1只有一個數(shù),記作S(A0).
(Ⅰ)若序列A0為1,2,3,求S(A0);
(Ⅱ)若序列A0為1,2,…,n,求S(A0);
(Ⅲ)若序列A和B完全一樣,則稱序列A與B相等,記作A=B,若序列B為序列A0:1,2,…,n的一個排列,請問:B=A0是S(B)=S(A0)的什么條件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設命題P:關于x的不等式${a^{{x^2}-ax-2{a^2}}}$>1(a>0且a≠1)的解集為{x|-a<x<2a};命題Q:f(x)=lg(ax2-x+a)的值域為R.如果P且Q為真,則實數(shù)a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(Ⅰ)已知數(shù)列{an}的前n項和Sn=3n2-2n,求證:數(shù)列{an}成等差數(shù)列;
(Ⅱ)設{bn}是首項b1=3,公比為q的等比數(shù)列,且b1,b2,b3成等差數(shù)列,求{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設$f(x)=\left\{{\begin{array}{l}{1-{x^2},x≤1}\\{lnx,x>1}\end{array}}\right.$,若方程f(x)=kx-$\frac{1}{2}$恰有四個不相等的實數(shù)根,則實數(shù)k的取值范圍是( 。
A.$(\frac{1}{2},\frac{1}{{\sqrt{e}}}$)B.(2,e)C.($\sqrt{e}$,2)D.$(\frac{1}{2},\sqrt{e}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知數(shù)列an的前n項和${S_n}=-{a_n}-{(\frac{1}{2})^{n-1}}+2(n∈{N^*})$,則數(shù)列{2nan}的前100項的和為5050.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.${∫}_{1}^{e}lnxdx$=( 。
A.$\frac{1}{e}$-1B.e-1C.1D.e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=Asin(ωx+φ)(其中$A>0,|φ|<\frac{π}{2}$)的圖象如圖所示,為了得到$g(x)=cos({2x-\frac{π}{2}})$的圖象,只需將f(x)的圖象( 。
A.向左平移$\frac{π}{3}$個長度單位B.向右平移$\frac{π}{3}$個長度單位
C.向左平移$\frac{π}{6}$個長度單位D.向右平移$\frac{π}{6}$個長度單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如果橢圓的兩焦點為F1(0,-1)和F2(0,1),P是橢圓上的一點,且|PF1|,|F1F2|,|PF2|成等差數(shù)列,那么橢圓的方程是(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{12}=1$C.$\frac{x^2}{4}+\frac{y^2}{3}=1$D.$\frac{x^2}{3}+\frac{y^2}{4}=1$

查看答案和解析>>

同步練習冊答案