11.作出函數(shù)y=|x2-2x-1|與y=x2-2|x|-1的圖象,并寫(xiě)出其值域.

分析 先作出函數(shù)y=x2-2x-1的圖象,再利用圖象變換,可得函數(shù)的圖象,然后通過(guò)圖象確定函數(shù)的值域.

解答 解:先作出函數(shù)y=x2-2x-1的圖象,再將y軸下方的圖象翻轉(zhuǎn)到上方即可,
函數(shù)y=|x2-2x-1|的圖象如下

由圖象可知函數(shù)的值域?yàn)閇0,+∞).
先作出函數(shù)y=x2-2x-1的圖象,再將y軸右方的圖象翻轉(zhuǎn)到左方即可,對(duì)應(yīng)函數(shù)的圖象如圖,

由圖象可知函數(shù)的值域?yàn)閇-2,+∞).

點(diǎn)評(píng) 本題主要考查二次函數(shù)的圖象和性質(zhì).要求熟練掌握二次函數(shù)的性質(zhì),必要時(shí)要結(jié)合二次函數(shù)的圖象來(lái)研究性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),某同學(xué)學(xué)到了如下一種方法:
先改寫(xiě)第k項(xiàng):k(k+1)=$\frac{1}{3}$[k(k+1)(k+2)-(k-1)k(k+1)],
由此得1×2=$\frac{1}{3}$(1×2×3-0×1×2),
2×3=$\frac{1}{3}$(2×3×4-1×2×3),
…,
n(n+1)=$\frac{1}{3}$[n(n+1)(n+2)-(n-1)n(n+1)]
相加,得1×2+2×3+…+n(n+1)=$\frac{1}{3}$n(n+1)(n+2).
類比上述方法,請(qǐng)你計(jì)算“1×2×3×4+2×3×4×+…+n(n+1)(n+2)(n+3)”,其結(jié)果是$\frac{1}{5}n(n+1)(n+2)(n+3)(n+4)$.(結(jié)果寫(xiě)出關(guān)于n的一次因式的積的形式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.一輛汽車在高速公路上行駛,由于遇到緊急情況而剎車,以速度v(t)=7-3t+$\frac{25}{1+t}$(t的單位:s,v的單位:m/s)行駛至停止,在此期間汽車?yán)^續(xù)行駛的距離(單位:m)是( 。
A.1+25ln 5B.8+25ln $\frac{11}{3}$C.4+25ln 5D.4+50ln 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知集合A={x|$\frac{x-5}{x}$<0},B={x|x≥1},則A∩B等于( 。
A.{x|x>0}B.{x|0<x<5}C.{x|x≥1}D.{x|1≤x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)y=$\frac{a{x}^{2}-8x+b}{{x}^{2}+1}$的最大值是9,最小值是1,則a=5,b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果S為( 。
A.-1B.0C.$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若方程x2-4x+3+m=0在x∈(0,3)時(shí)有唯一實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知在三棱錐P-ABC中,平面PAC⊥平面ABC,∠ABC=$\frac{π}{2}$,△PAC為正三角形且邊長(zhǎng)為4,則該三棱錐外接球O的表面積S=$\frac{64}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若函數(shù)y=x2-4px-2的圖象過(guò)點(diǎn)A(tanα,1),及B(tanβ,1),求sin2(α+β).

查看答案和解析>>

同步練習(xí)冊(cè)答案