甲和乙等五名志愿者被隨機(jī)地分到A、B、C、D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者,則甲和乙不在同一崗位服務(wù)的概率為 (   )

A.            B.       C.        D.

 

【答案】

B

【解析】

試題分析:當(dāng)甲乙二人在同一崗位時(shí),采用捆綁法將甲乙看作一人,此時(shí)的分配方案有種,

五人任意分配到四個(gè)崗位有種,所以甲乙在一起的概率為,甲乙不在一起的概率為

考點(diǎn):古典概型概率

點(diǎn)評(píng):本題用到了捆綁法,此法適用于排隊(duì)時(shí)多個(gè)體在一起的背景,分組多個(gè)體同組的背景

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲和乙等五名志愿者被隨機(jī)地分到A、B、C、D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者,則甲和乙不在同一崗位服務(wù)的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

甲和乙等五名志愿者被隨機(jī)地分到A、B、C、D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者,則甲和乙不在同一崗位服務(wù)的概率為( 。
A.
1
10
B.
9
10
C.
1
4
D.
48
625

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省福州市八縣(市)一中高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

甲和乙等五名志愿者被隨機(jī)地分到A、B、C、D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者,則甲和乙不在同一崗位服務(wù)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年河北省衡水市冀州中學(xué)高三一輪檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

甲和乙等五名志愿者被隨機(jī)地分到A、B、C、D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者,則甲和乙不在同一崗位服務(wù)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案