13.已知角α終邊上一點(diǎn)P(-2,3),則$\frac{cos(\frac{π}{2}+α)sin(π+α)}{cos(π-α)sin(3π-α)}$的值為( 。
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

分析 直接利用任意角的三角函數(shù)求出cosα,sinα,利用誘導(dǎo)公式化簡(jiǎn)求解即可.

解答 解:由$\frac{cos(\frac{π}{2}+α)sin(π+α)}{cos(π-α)sin(3π-α)}$=$\frac{-sinα•(-sinα)}{-cosα•sinα}$=-tanα
∵角α終邊上一點(diǎn)P(-2,3),即x=-2,y=3.
∴tanα=$\frac{y}{x}=-\frac{3}{2}$.
則:-tanα=$\frac{3}{2}$
故選:A.

點(diǎn)評(píng) 本題考查任意角的三角函數(shù)的定義,和誘導(dǎo)公式的運(yùn)用,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,若函數(shù)$f(x)=\frac{1}{3}{x^3}+b{x^2}+({a^2}+{c^2}-ac)x+1$有極值點(diǎn),則∠B的范圍是($\frac{π}{3}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,曲線C2的極坐標(biāo)方程為:ρ2(1+sin2θ)=8,
(1)寫出C1和C2的普通方程;
(2)若C1與C2交于兩點(diǎn)A,B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求下列函數(shù)的定義域、值域及單調(diào)區(qū)間.
(1)f(x)=3${\;}^{\sqrt{{x}^{2}-5x+4}}$;
(2)f(x)=4x-2x+1-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集合M={x|y=$\sqrt{lo{g}_{\frac{1}{2}}x-1}$},N={x||x-$\frac{1}{2}$|≤$\frac{1}{4}$},則M∩N=( 。
A.[2,+∞)B.[-1,$\frac{3}{4}$]C.[$\frac{1}{4}$,$\frac{1}{2}$]D.[$\frac{1}{4}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足cos2B-cos2C-sin2A=-sinAsinB,sin(A-B)=cos(A+B).
(1)求角A、B、C;
(2)若a=$\sqrt{2}$,求三角形ABC的邊長(zhǎng)b的值及三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.有下列一列數(shù):$\frac{1}{2}$,1,1,1,(  ),$\frac{11}{13}$,$\frac{13}{17}$,$\frac{15}{19}$,$\frac{17}{23}$,…,按照規(guī)律,括號(hào)中的數(shù)應(yīng)為( 。
A.$\frac{3}{4}$B.$\frac{9}{11}$C.$\frac{9}{10}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列各組對(duì)象不能組成集合的是(  )
A.里約熱內(nèi)盧奧運(yùn)會(huì)的比賽項(xiàng)目B.中國(guó)文學(xué)四大名著
C.我國(guó)的直轄市D.抗日戰(zhàn)爭(zhēng)中著名的民族英雄

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)從裝有3個(gè)紅球、2個(gè)白球的袋中任取3個(gè)球,求所取的3個(gè)球中至少有1個(gè)白球的概率?
(2)在半徑為1的圓中隨機(jī)地撒一大把豆子,求豆子落在圓內(nèi)接正方形中的概率?

查看答案和解析>>

同步練習(xí)冊(cè)答案