9.已知數(shù)列{an}前n項(xiàng)和為Sn,且滿足a1=1,4Sn=anan+1+1.
(1)計(jì)算a2、a3、a4的值,并猜想{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)滿足a1=1,4Sn=anan+1+1.令n=1,可得:4S1=4a1=a1a2+1,解得a2=3,令n=2,3,同理可得:a3,a4.猜想an=2n-1.
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂項(xiàng)求和”方法即可得出.

解答 解:(1)滿足a1=1,4Sn=anan+1+1.令n=1,可得:4S1=4a1=a1a2+1,解得a2=3,
令n=2,3,同理可得:a3=5,a4=7.
猜想an=2n-1.
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴數(shù)列{bn}的前n項(xiàng)和Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知命題p:方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{m-5}$=1表示雙曲線,命題q:x∈(0,+∞),x2-mx+4≥0恒成立,若p∨q是真命題,且?(p∧q)也是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(x-$\frac{1}{x}$)6展開式中x2的系數(shù)為( 。
A.-15B.15C.-20D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若執(zhí)行如圖所示的程序圖,則運(yùn)行后輸出的結(jié)果是( 。
A.3B.-3C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若復(fù)數(shù)(1-i)(2+ai)是實(shí)數(shù),則實(shí)數(shù)a等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({-3,2})$,若$({k\overrightarrow a+\overrightarrow b})∥({\overrightarrow a-3\overrightarrow b})$,則實(shí)數(shù)k的值為( 。
A.3B.$\frac{1}{3}$C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{2π}{3}$對稱,它的周期是π,則以下命題錯(cuò)誤的是(  )
A.f(x)的圖象過點(diǎn)$(0,\frac{1}{2})$B.f(x)在$[{\frac{5π}{12},\frac{2π}{3}}]$上是減函數(shù)
C.f(x)的一個(gè)對稱中心是點(diǎn)$({\frac{5π}{12},0})$D.f(x)的最大值為A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知F1,F(xiàn)2為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的左右焦點(diǎn),過F1的直線l與圓x2+y2=b2相切于點(diǎn)M,且|MF2|=2|MF1|,則直線l的斜率是( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{7}}}{2}$C.$±\frac{{\sqrt{3}}}{2}$D.$±\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點(diǎn)P(3,-2),則點(diǎn)P到直線l:3x+4y-25=0的距離為$\frac{24}{5}$.

查看答案和解析>>

同步練習(xí)冊答案