cos
π
7
+cos
7
+cos
7
+cos
7
+cos
7
+cos
7
=
 
考點:運用誘導公式化簡求值
專題:計算題,三角函數(shù)的求值
分析:由cos(π-α)=cosπcosα+sinπsinα=-cosα,即可計算求值.
解答: 解:cos(π-α)=cosπcosα+sinπsinα=-cosα
所以cos
π
7
+cos
7
+cos
7
+cos
7
+cos
7
+cos
7

=(cos
π
7
+cos
7
)+(cos
7
+cos
7
)+(cos
7
+cos
7

=0
故答案為:0.
點評:本題主要考察了誘導公式化簡求值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實軸長為2的等軸雙曲線S的焦點在y軸上.
(1)求雙曲線S的方程;
(2)設l1,l2是過點P(-
2
,0)的兩條相互垂直的直線,且l1,l2與雙曲線S各有兩個交點,求l1的斜率k1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(2
3
sin
x
4
,2),向量
n
=(cos
x
4
,cos2a),若
m
n
=2
,求cos(x+
π
3
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線y=-
4
x
的一條切線l與直線x+4y-8=0垂直,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(ωx+
π
6
)(ω>0),f(
π
6
)=f(
π
3
),且f(x)在區(qū)間(
π
12
,
6
)上有最大值無最小值,則ω=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2x+
3
sinxcosx+2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)當函數(shù)f(x)取得最大值時,求自變量x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為第二象限的角,則π-
α
2
所在的象限是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐V-ABC中,VB=6,AC=3,P為△VAC的重心,過點P作三棱錐的一個截面,使截面平行于直線VB和AC,則截面的周長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x,y的方程C:x2+y2-2x-4y+m=0.
(1)當m為何值時,方程C表示圓;
(2)在(1)的條件下,若圓C與直線l:x+2y-4=0相交于M、N兩點,且|MN|=
4
5
5
,求m的值.

查看答案和解析>>

同步練習冊答案