13.已知函數(shù)f(x)=|x+1|+|x+a|,若不等式f(x)≥6的解集為(-∞,-2]∪[4,+∞),則a的值為( 。
A.-7或3B.-7或5C.-3D.3或5

分析 由題意可得f(-2)=6,且f(4)=6,由此求得a的值.

解答 解:函數(shù)f(x)=|x+1|+|x+a|,若不等式f(x)≥6的解集為(-∞,-2]∪[4,+∞),
故f(-2)=1+|-2+a|=6,且f(4)=5+|4+a|=6,
求得a=-3,
故選:C.

點(diǎn)評 本題考查絕對值不等式的解法,判斷f(-2)=6,且f(4)=6,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=x,b=2,B=60°,如果解此三角形有且只有兩個解,則x的取值范圍是$({2,\frac{{4\sqrt{3}}}{3}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的各項(xiàng)均為正數(shù),觀察程序框圖,若k=5,k=10時,分別有S=$\frac{5}{11}$和S=$\frac{10}{21}$.
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=3n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù).如三角形數(shù)1,3,6,10,…,第n個三角形數(shù)為$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n.記第n個k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個數(shù)的表達(dá)式:
三角形數(shù)     N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形數(shù)      N(n,4)=n2
五邊形數(shù)      $N({n,5})=\frac{3}{2}{n^2}-\frac{1}{2}n$
六邊形數(shù)      N(n,6)=2n2-n

可以推測N(n,k)的表達(dá)式,由此計(jì)算 N(20,32)=5720.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別是a,b,c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求$sin(A+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ax2-2x+1+lnx
(Ⅰ)若f(x)無極值點(diǎn),但其導(dǎo)函數(shù)f′(x)有零點(diǎn),求a的取值;
(Ⅱ)若f(x)有兩個極值點(diǎn),求a的取值范圍,并證明f(x)的極小值小于$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=x+xlnx,若a∈Z,且直線y=ax在曲線y=f(x+1)的下方,則a的最大值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=3x+sinx在x∈[0,π]上的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線$\sqrt{3}$x+y-2=0截圓x2+y2=4得到的劣弧所對的圓周角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊答案