已知橢圓中心在原點,焦點在軸上,橢圓短軸的端點和焦點組成的四邊形為正方形,且.
(1)求橢圓方程;
(2)直線過點,且與橢圓相交于、不同的兩點,當面積取得最大值時,求直線的方程.

(1)(2)

解析試題分析:(1)由題意知:
故橢圓方程為.                                                         ……4分
(2)易知直線的斜率存在,設(shè)為,直線方程:,則
,
設(shè),則,
,                                                            ……7分
所以
又點到直線的距離,
.                                         …… 10分
,則,
當且僅當時,取“”,
此時的方程為.                                              …… 12分
考點:本小題主要考查橢圓標準方程的求解、直線與橢圓的位置關(guān)系的應(yīng)用、韋達定理、弦長公式、點到直線的距離公式、三角形面積公式和利用基本不等式求最值等知識的綜合應(yīng)用,考查學生綜合運用知識解決問題的能力和運算求解能力.
點評:直線與圓錐曲線的關(guān)系問題時高考時重點考查的題型,一般是壓軸題,難度較大,運算比較復(fù)雜,要多加練習,牢固掌握.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B,

(1)若|AB|=8,求拋物線的方程;
(2)設(shè)C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;
(3)設(shè)P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關(guān))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)雙曲線的離心率為2,坐標原點到
直線AB的距離為,其中A,B.  
(1)求雙曲線的方程;
(2)若是雙曲線虛軸在軸正半軸上的端點,過作直線與雙曲線交于兩點,求
時,直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知:橢圓的中心為,長軸的兩個端點為,右焦點為.若橢圓經(jīng)過點,上的射影為,且△的面積為5.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知圓=1,直線=1,試證明:當點在橢圓
運動時,直線與圓恒相交;并求直線被圓截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分9分)已知頂點在原點,焦點在軸上的拋物線過點
(1)求拋物線的標準方程;
(2)過點作直線交拋物線于兩點,使得恰好平分線段,求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線過點
(I)求拋物線的方程;
(II)已知圓心在軸上的圓過點,且圓在點的切線恰是拋物線在點的切線,求圓的方程;
(Ⅲ)如圖,點軸上一點,點是點關(guān)于原點的對稱點,過點作一條直線與拋物線交于兩點,若,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已(12分)知橢圓的中心在坐標原點,離心率為,一個焦點是F(0,1).
(Ⅰ)求橢圓方程;
(Ⅱ)直線過點F交橢圓于A、B兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)設(shè),在平面直角坐標系中,已知向量,向量,,動點的軌跡為E. 求軌跡E的方程,并說明該方程所表示曲線的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知橢圓的一個焦點與拋物線的焦點重合,P為橢圓與拋物線的一個公共點,且|PF|=2,傾斜角為的直線過點.
(1)求橢圓的方程;
(2)設(shè)橢圓的另一個焦點為,問拋物線上是否存在一點,使得關(guān)于直線對稱,若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案