在平面直角坐標(biāo)系中,已知圓心在軸上、半徑為的圓位于軸右側(cè),且與直線相切.
(1)求圓的方程;
(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的的面積;若不存在,請(qǐng)說明理由.
(1);
(2)時(shí)取得最大值,點(diǎn)的坐標(biāo)是與,面積的最大值是.
解析試題分析:(1)設(shè)圓心是,它到直線的距離是,
解得或(舍去) 4分
所求圓的方程是 6分
(2)點(diǎn)在圓上
,且
又原點(diǎn)到直線的距離 8分
解得 9分
而 11分
12分
當(dāng),即時(shí)取得最大值,
此時(shí)點(diǎn)的坐標(biāo)是與,面積的最大值是. 14分
考點(diǎn):本題主要考查圓,直線與圓的位置關(guān)系,二次函數(shù)的性質(zhì)。
點(diǎn)評(píng):中檔題,求圓的方程,一般利用待定系數(shù)法,本題解法是從確定圓心、半徑入手,體現(xiàn)解題的靈活性。直線與圓的位置關(guān)系問題,往往涉及圓的“特征三角形”,利用勾股定理解決弦長(zhǎng)計(jì)算問題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)和圓:.
(Ⅰ)過點(diǎn)的直線被圓所截得的弦長(zhǎng)為,求直線的方程;
(Ⅱ)若的面積,且是圓內(nèi)部第一、二象限的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)
的點(diǎn)稱為整點(diǎn)),求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓和點(diǎn)(1)若過點(diǎn)有且只有一條直線與圓相切,求正實(shí)數(shù)的值,并求出切線方程;(2)若,過點(diǎn)的圓的兩條弦互相垂直,設(shè)分別為圓心到弦的距離.
(Ⅰ)求的值;
(Ⅱ)求兩弦長(zhǎng)之積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的離心率為,其中左焦點(diǎn).
(Ⅰ)求出橢圓C的方程;
(Ⅱ) 若直線與曲線C交于不同的A、B兩點(diǎn),且線段AB的中點(diǎn)M在圓上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知:以點(diǎn)C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點(diǎn)O, A,
與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y = –2x+4與圓C交于點(diǎn)M, N,若,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.
(1)過C1的左頂點(diǎn)引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn).若l與圓x2+y2=1相切,求證:OP⊥OQ;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com