解:(Ⅰ)f(x)的定義域?yàn)?0,+∞),
,
(1)若-1<a<0,則當(dāng)0<x<-a時(shí),f′(x)>0;當(dāng)-a<x<1時(shí),f′(x)<0;當(dāng)x>1時(shí),f′(x)>0,
故f(x)分別在(0,-a),(1,+∞)上單調(diào)遞增,在(-a,1)上單調(diào)遞減;
(2)若a<-1,仿(1)可得f(x)分別在(0,1),(-a,+∞)上單調(diào)遞增,在(1,-a)上單調(diào)遞減;
(Ⅱ)存在a,使g(x)在[a,-a]上為減函數(shù);
事實(shí)上,設(shè)
(x∈R),
則
,
再設(shè)
(x∈R),
則當(dāng)g(x)在[a,-a]上單調(diào)遞減時(shí),h(x)必在[a,0]上單調(diào)遞減,所以h′(a)≤0.
由于e
x>0,因此m(a)≤0,而m(a)=a
2(a+2),所以a≤-2.
此時(shí),顯然有g(shù)(x)在[a,-a]上為減函數(shù),當(dāng)且僅當(dāng)f(x)在[1,-a]上為減函數(shù),h(x)在[a,1]上為減函數(shù),且h(1)≥e·f(1),
由(Ⅰ)知,當(dāng)a≤-2時(shí),f(x)在[1,-a]上為減函數(shù),①
又h(1)≥e·f(1)
4a
2+13a+3≤0
-3≤a≤
,②
不難知道,
,h′(x)≤0
,m(x)≤0.
因m′(x)=-6x
2+6(a-2)x+12a=-6(x+2)(x-a),
令m′(x)=0,則x=a,或x= -2,
而a≤-2,于是
(1)當(dāng)a<-2時(shí),若a<x<-2,則m′(x)>0;若-2<x<1,則m′(x)<0,
因而m(x)在(a,-2)上單調(diào)遞增,在(-2,1)上單調(diào)遞減;
(2)當(dāng)a=-2時(shí),m′(x)≤0,m(x)在(-2,1)上單調(diào)遞減;
綜合(1),(2)知,當(dāng)a≤-2時(shí),m(x)在[a,1]上的最大值為m(-2)=-4a
2-12a-8.
所以
,③
又對x∈[a,1],m(x)=0只有當(dāng)a=-2時(shí)在x=-2取得,亦即h′(x)=0只有當(dāng)a=-2時(shí)在x=-2取得.
因此,當(dāng)a≤-2時(shí),h(x)在[a,1]上為減函數(shù),
從而由①,②,③知,-3≤a≤-2;
綜上所述,存在a,使g(x)在[a,-a]上為減函數(shù),且a的取值范圍為[-3,-2].