8.已知a>2,f(x)=|2x-a|+|x-1|.
(Ⅰ)求函數(shù)f(x)最小值;
(Ⅱ)關(guān)于x的不等式f(x)≤2-|x-1|有解,求a的取值范圍.

分析 (Ⅰ)通過討論x的范圍,求出函數(shù)的分段函數(shù)的形式,從而求出函數(shù)的最小值即可;
(Ⅱ)問題轉(zhuǎn)化為|2x-a|+|2x-2|≤2,根據(jù)絕對(duì)值不等式的性質(zhì)得到|2x-a|+|2x-2|≥a-2,問題轉(zhuǎn)化為a-2≤2,解出即可.

解答 解:(Ⅰ)因?yàn)閍>2,所以$\frac{a}{2}>1$,
所以$f(x)=\left\{\begin{array}{l}3x-a-1,x≥\frac{a}{2}\\-x+a-1,1≤x≤\frac{a}{2}\\-3x+a+1,x<1\end{array}\right.$.
可知f(x)在$(-∞,\frac{a}{2}]$單調(diào)遞減,在$[\frac{a}{2},+∞)$單調(diào)遞增,
所以當(dāng)$x=\frac{a}{2}$時(shí),f(x)取最小值$\frac{a}{2}-1$.…(5分)
(Ⅱ)不等式f(x)≤2-|x-1|,即|2x-a|+|2x-2|≤2.
因?yàn)閨2x-a|+|2x-2|≥|(2x-a)-(2x-2)|=|a-2|,
當(dāng)(2x-a)(2x-2)≤0,即$1≤x≤\frac{a}{2}$時(shí),等號(hào)成立,
所以|2x-a|+|2x-2|≥a-2.
因?yàn)殛P(guān)于x的不等式|2x-a|+|2x-2|≤2有解,
所以a-2≤2,得a≤4,
故a的取值范圍是(2,4].…(10分)

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問題,考查絕對(duì)值的性質(zhì)以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\overrightarrow{a}$=(1,-1),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow$,若△OAB是以點(diǎn)O為直角頂點(diǎn)的等腰直角三角形,則△OAB的面積為( 。
A.2B.4C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=1nx-$\frac{a(x-1)}{x+1}$.(a∈R)
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若$\frac{(x+1)1nx+2a}{{{{(x+1)}^2}}}<\frac{1nx}{x-1}$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且asinB=$\sqrt{3}$bcosA.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,c-b=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.二項(xiàng)式${(2x-\frac{1}{x})^5}$展開式中,第四項(xiàng)的系數(shù)為( 。
A.40B.-40C.80D.-80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.閱讀如圖的程序框圖,若運(yùn)行相應(yīng)的程序,則輸出k的值為99.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(3,-2),且($\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow$,則m=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)$g(x)=({-{x^4}-{x^2}})+\frac{1}{{{e^{|x|}}-1}}$,若不等式g(x2)>g(ax)對(duì)一切x∈[-1,0)∪(0,1]恒成立,則a的取值范圍是( 。
A.(-∞,-1)∪(1,+∞)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=x-$\frac{1}{x}$-2m•lnx(m∈R)
(Ⅰ)當(dāng)m=-1時(shí),求函數(shù)f(x)的零點(diǎn);
(Ⅱ)當(dāng)m>-1時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)在(Ⅱ)條件下,若f(x)有兩個(gè)極值點(diǎn)是x1,x2,過點(diǎn)A(x1,f(x1)),B(x2,f(x2))的直線 的斜率為k,問:是否存在m,使k=2-2m?若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案