如下圖,∠BAD=90°的等腰Rt△ABD與正△CBD所在平面成60°的二面角,則AB與平面BCD所成角的大小為_____________.

arcsin

解析:取BD的中點E,連結(jié)AE、CE、AC.

∵AB=AD,BC=CD,

∴∠AEC為二面角BCD-ABD的平面角,為60°.

作AF⊥CE于F,連結(jié)BF,則∠ABF為AB與面BCD所成的角.

設(shè)AD=AB=a,則AE=a.

AF=AE·sin60°=a.

∴sinABF==,

即∠ABF=arcsin.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,∠BAD=90°的等腰直角三角形ABD與正三角形CBD所在平面互相垂直,E是BC的中點,則AE與平面BCD所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省成都七中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:填空題

如圖,∠BAD=90°的等腰直角三角形ABD與正三角形CBD所在平面互相垂直,E是BC的中點,則AE與平面BCD所成角的大小為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省成都七中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,∠BAD=90°的等腰直角三角形ABD與正三角形CBD所在平面互相垂直,E是BC的中點,則AE與平面BCD所成角的大小為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省廣州市仲元中學(xué)高三數(shù)學(xué)專題訓(xùn)練:直線、平面、簡單幾何(解析版) 題型:解答題

如圖,∠BAD=90°的等腰直角三角形ABD與正三角形CBD所在平面互相垂直,E是BC的中點,則AE與平面BCD所成角的大小為   

查看答案和解析>>

同步練習(xí)冊答案