分析 (Ⅰ)證明四邊形AMND為平行四邊形,可得AD∥MN,利用線面平行的判定定理證明:AD∥平面BEC;
(Ⅱ)利用VE-ABC=VA-BEC,求點(diǎn)E到平面ABCD的距離.
解答 (Ⅰ)證明:分別取BE,CE中點(diǎn)M,N,連接AM,MN,DN,
由已知可得△ABE,△DCE均為腰長(zhǎng)為4的等腰直角三角形,
所以AM⊥BE,且AM=2$\sqrt{2}$.
又∵平面ABE⊥平面BCE,且交線為BE,
∴AM⊥平面BEC,
同理可得:DN⊥平面BEC,且DN=2$\sqrt{2}$.
∴AM∥DN,且AM=DN,
∴四邊形AMND為平行四邊形.
∴AD∥MN,
又∵M(jìn)N?平面BEC,AD?平面BEC,
∴AD∥平面BEC.…(6分)
(Ⅱ)解:點(diǎn)E到平面ABC的距離,也就是三棱錐E-ABC的高h(yuǎn).
連接AC,MC,
在Rt△EMC中有MC=$\sqrt{E{M}^{2}+E{C}^{2}}$=2$\sqrt{10}$,
在Rt△AMC中有AC=$\sqrt{A{M}^{2}+M{C}^{2}}$=4$\sqrt{3}$.
可得AC2+AB2=BC2,所以△ABC是直角三角形.
由VE-ABC=VA-BEC得$\frac{1}{3}$•$\frac{1}{2}$AB•AC•h=$\frac{1}{3}$•$\frac{1}{2}$BE•EC•AM,
可知h=$\frac{4\sqrt{6}}{3}$.
∴點(diǎn)E到平面ABC的距離為$\frac{4\sqrt{6}}{3}$.…(12分)
點(diǎn)評(píng) 本題考查線面平行的證明,考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等體積方法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2.5 | B. | 3 | C. | 2 | D. | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com