(文科題)(本小題12分)
(1)在等比數(shù)列{ }中,=162,公比q=3,前n項(xiàng)和=242,求首項(xiàng)和項(xiàng)數(shù)n的值.
(2)已知是數(shù)列的前n項(xiàng)和,,求
(1);(2)
解析試題分析:(1)由=162,公比q=3,可求出a1,再根據(jù)等比數(shù)列前n項(xiàng)公式利用=242,得到關(guān)于n的方程求出n的值。
(2)根據(jù)求通項(xiàng)即可。
(1)由已知得 ……… 3分
解得………… 5分
(2) …………7分
……… 10分
……………11分
12分
考點(diǎn):等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,由Sn求an等知識(shí)。
點(diǎn)評(píng):.掌握等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式是求解此類問題的關(guān)鍵,再由Sn求an時(shí),要注意利用來求。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知{an}是一個(gè)等差數(shù)列,且a2=1,a5=-5.
(1)求數(shù)列{an}的通項(xiàng)an;
(2)求{an}前n項(xiàng)和Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知各項(xiàng)都不相等的等差數(shù)列的前6項(xiàng)和為60,且為和的等比中項(xiàng).
( I ) 求數(shù)列的通項(xiàng)公式;
(II) 若數(shù)列滿足,且,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知等差數(shù)列滿足:,,的前n項(xiàng)和為.
(1)求及;
(2)令(nN*),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
若等差數(shù)列的前項(xiàng)和為,且滿足為常數(shù),則稱該數(shù)列為數(shù)列.
(1)判斷是否為數(shù)列?并說明理由;
(2)若首項(xiàng)為且公差不為零的等差數(shù)列為數(shù)列,試求出該數(shù)列的通項(xiàng)公式;
(3)若首項(xiàng)為,公差不為零且各項(xiàng)為正數(shù)的等差數(shù)列為數(shù)列,正整數(shù)滿足,求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng),第5項(xiàng),第14項(xiàng)分別是等比數(shù)列{bn}的第2項(xiàng),第3項(xiàng),第4項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和
(3)設(shè)數(shù)列{cn}對(duì)任意自然數(shù)n,均有,求c1+c2+c3+……+c2006值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知{an}為等差數(shù)列,且a3=-6,a6=0.
(1)求{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知等差數(shù)列的首項(xiàng)前項(xiàng)和記為,求取何值時(shí),取得最大值,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是一次函數(shù),且成等比數(shù)列,設(shè),( )
(1)求Tn;
(2)設(shè),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com