若圓的一條弧長(zhǎng)等于這個(gè)圓的內(nèi)接正三角形邊長(zhǎng)的一半,則這條弧所對(duì)的圓心角的弧度數(shù)為
 
考點(diǎn):弧長(zhǎng)公式,弧度制
專(zhuān)題:三角函數(shù)的求值
分析:利用等邊三角形的性質(zhì)、直角三角形的邊角關(guān)系、弧長(zhǎng)公式即可得出.
解答: 解:設(shè)圓的半徑為r,正三角形的邊長(zhǎng)為a,
則r=
2
2
2
3
=
3
3
a,
∴a=
3
r,
∴這條弧所對(duì)的圓心角的弧度數(shù)α=
1
2
a
r
=
3
r
2
r
=
3
2

故答案為:
3
2
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì)、直角三角形的邊角關(guān)系、弧長(zhǎng)公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列6種圖象變換方法:
①圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的
1
2
;
②圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍;
③圖象向右平移
π
3
個(gè)單位;
④圖象向左平移
π
3
個(gè)單位;
⑤圖象向右平移
3
個(gè)單位;
⑥圖象向左平移
3
個(gè)單位.
請(qǐng)用上述變換將函數(shù)y=sinx的圖象變換到函數(shù)y=sin (
x
2
+
π
3
)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a<b<0,a+b=-2,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“x>1”是“x>a”的充分不必要條件,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式(ax-1)(x-2)<0.
(1)若a=1,求不等式的解集;
(2)若a>0,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
5
13
,α是第二象限的角,則cos(π-α)=( 。
A、
12
13
B、
5
13
C、-
5
13
D、-
12
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x2+2ax+b<0的解集是{x|-3<x<2},求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,定義兩點(diǎn)P(x1,yl),Q(x2,y2)之間的“直角距離為d(P,Q)=|x1-x2|+|y1-y2|.
現(xiàn)有以下命題:
①若P,Q是x軸上兩點(diǎn),則d(P,Q)=|x1-x2|;
②已知兩點(diǎn)P(2,3),Q(sin2α,cos2α),則d(P,Q)為定值;
③原點(diǎn)O到直線x-y+l=0上任意一點(diǎn)P的直角距離d(O,P)的最小值為
2
2
;
④若|PQ|表示P、Q兩點(diǎn)間的距離,那么|PQ|≥
2
2
d(P,Q);
其中為真命題的是
 
(寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列命題中,不是公理的是( 。
A、如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
B、過(guò)不在同一直線上的三點(diǎn),有且只有一個(gè)平面
C、如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在此平面內(nèi)
D、平行于同一個(gè)平面的兩個(gè)平面相互平行

查看答案和解析>>

同步練習(xí)冊(cè)答案