【題目】已知橢圓的左右焦點(diǎn)分別為,過(guò)任作一條與坐標(biāo)軸都不垂直的直線,與交于兩點(diǎn),且的周長(zhǎng)為.當(dāng)直線的斜率為時(shí),軸垂直

(1)求橢圓的方程

(2)若是該橢圓上位于第一象限的一點(diǎn),過(guò)作圓的切線,切點(diǎn)為,求的值;

(3)設(shè)為定點(diǎn),直線過(guò)點(diǎn)軸交于點(diǎn),且與橢圓交于兩點(diǎn),設(shè),,求的值

【答案】(1);(2);(3)

【解析】

1)根據(jù)橢圓定義可求得;再利用斜率得到,利用的關(guān)系求得結(jié)果;(2)假設(shè),利用兩點(diǎn)間距離公式表示出;再利用直角三角形求解出切線長(zhǎng),作差得到結(jié)果;(3)假設(shè)直線兩點(diǎn)坐標(biāo),利用向量關(guān)系表示出,將直線代入橢圓方程,利用韋達(dá)定理表示出,整理得到結(jié)果.

1的周長(zhǎng)為

根據(jù)橢圓定義可知:

當(dāng)斜率為時(shí):,

可得:

橢圓的方程

2)設(shè),則

連接,由相切條件知:

3)由題意可知直線的斜率存在且不為,設(shè)直線的方程為

,可得,則

設(shè),

,則

,可得,即

,代入橢圓中,可得:

由韋達(dá)定理得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f1(x)=Asin(ωxφ)(A>0,ω>0,|φ|<)的一段圖象過(guò)點(diǎn)(0,1),如圖所示.

(1)求函數(shù)f1(x)的表達(dá)式;

(2)將函數(shù)yf1(x)的圖象向右平移個(gè)單位,得函數(shù)yf2(x)的圖象,求yf2(x)的最大值,并求出此時(shí)自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見(jiàn)如表:

(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號(hào)1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】潮汐是發(fā)生在沿海地區(qū)的一種自然現(xiàn)象,其形成是海水受日月的引力.潮是指海水在一定的時(shí)候發(fā)生漲落的現(xiàn)象.一般來(lái)說(shuō),早潮叫潮,晚潮叫汐.某觀測(cè)站通過(guò)長(zhǎng)時(shí)間的觀測(cè),其發(fā)現(xiàn)潮汐的漲落規(guī)律和函數(shù)圖象基本一致且周期為,其中為時(shí)間,為水深.當(dāng)時(shí),海水上漲至最高5.

1)作出函數(shù)內(nèi)的圖象,并求出潮汐漲落的頻率和初相;

2)求海水水深持續(xù)加大的時(shí)間區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的單調(diào)遞減的概率;

2)當(dāng)且為整數(shù)時(shí),求二次函數(shù)有兩個(gè)零點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時(shí)間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個(gè)旅行者的如下信息:

①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h

②騎自行車者是變速運(yùn)動(dòng),騎摩托車者是勻速運(yùn)動(dòng);

③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;

④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.

其中,正確信息的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線與曲線在它們的某個(gè)交點(diǎn)處具有公共切線,求的值;

(Ⅱ)若存在實(shí)數(shù)使不等式的解集為,求實(shí)數(shù)的取值范圍

(Ⅲ)若方程有三個(gè)不同的解,且它們可以構(gòu)成等差數(shù)列,寫(xiě)出實(shí)數(shù)的值(只需寫(xiě)出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、分別為雙曲線的左右焦點(diǎn),左右頂點(diǎn)為、是雙曲線上任意一點(diǎn),則分別以線段為直徑的兩圓的位置關(guān)系為( )

A. 相交B. 相切C. 相離D. 以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們稱一個(gè)非負(fù)整數(shù)集合(非空)為好集合,若對(duì)任意,或者,或者.以下記的元素個(gè)數(shù).

給出所有的元素均小于的好集合;(給出結(jié)論即可)

求出所有滿足的好集合;(同時(shí)說(shuō)明理由)

若好集合滿足,求證: 中存在元素,使得中所有元素均為的整數(shù)倍.

查看答案和解析>>

同步練習(xí)冊(cè)答案