18.若函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax在區(qū)間($\frac{1}{3},+∞}$)上單調(diào)遞增,則實數(shù)a的取值范圍是[-$\frac{2}{9}$,+∞).

分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為2a≥-x2-x在($\frac{1}{3},+∞}$)恒成立,令h(x)=-x2-x,x∈($\frac{1}{3},+∞}$),根據(jù)函數(shù)的單調(diào)性求出h(x)的范圍,從而求出a的范圍即可.

解答 解:f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax,
∴f′(x)=x2+x+2a=(x-$\frac{1}{2}$)2+$\frac{1}{4}$+2a,
若f(x)在區(qū)間($\frac{1}{3},+∞}$)上單調(diào)遞增,
則x2+x+2a≥0在($\frac{1}{3},+∞}$)恒成立,
即2a≥-x2-x在($\frac{1}{3},+∞}$)恒成立,
令h(x)=-x2-x,x∈($\frac{1}{3},+∞}$),
h(x)在($\frac{1}{3}$,+∞)遞減,
∴h(x)≤h($\frac{1}{3}$)=-$\frac{4}{9}$,
∴2a≥-$\frac{4}{9}$,
a≥-$\frac{2}{9}$,
故答案為:[-$\frac{2}{9}$,+∞).

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義在(-$\frac{π}{2}$,$\frac{π}{2}$)上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且當(dāng)x∈(0,$\frac{π}{2}$)時,f'(x)>sin2x•f(x)-cos2x•f'(x),若a=f($\frac{π}{3}$),b=2f(0),c=$\sqrt{3}$f($\frac{π}{6}$),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>b>aC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若數(shù)列{an}滿足$\frac{1}{{{a_{n+1}}}}-\frac{p}{a_n}$=0,n∈N*,p為非零常數(shù),則稱數(shù)列{an}為“夢想數(shù)列”.已知正項數(shù)列$\left\{{\frac{1}{b_n}}\right\}$為“夢想數(shù)列”,且b1b2b3…b99=399,則b8+b92的最小值是( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在一次考試中,7位同學(xué)的數(shù)學(xué)、物理成績分數(shù)對應(yīng)如表:
學(xué)生  A
 數(shù)學(xué)(x分) 60 65 70 75 80 85 90
 物理(y分) 7177 80 84 87 90 92
(1)根據(jù)上述數(shù)據(jù),求出變量y與x的相應(yīng)系數(shù)并說明物理成績y與數(shù)學(xué)成績x之間線性相關(guān)關(guān)系的強弱
(2)如果物理成績y與數(shù)學(xué)成績x之間有較強的線性相關(guān)關(guān)系,求y與x的線性回歸方程,并估測該班某位同學(xué)數(shù)學(xué)分數(shù)是95分時的物理成績;(系數(shù)精確到0.01)
本題參考數(shù)據(jù):
$\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}$=700,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=480,$\sqrt{700}$≈26.5,$\sqrt{336}$≈18.3
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
對于相關(guān)數(shù)據(jù)系數(shù)r的大小,如果r∈[-1,-0.75],那么y與x負相關(guān)很強,如果r∈[0.75,1],那么y與x正相關(guān)很強,如果r∈(-0.75,-0.30)或r∈(0.30,0.75),那么y與x相關(guān)性一般,如果r∈[-0.25,0.25],那么y與x相關(guān)性較弱.
回歸直線方程:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知cosα=$\frac{1}{3}$,則cos2α=( 。
A.$-\frac{5}{9}$B.$\frac{{\sqrt{6}}}{3}$C.1D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+(a-1)x+1在區(qū)間($\frac{1}{2}$,1)上是減函數(shù).
(1)求實數(shù)a的取值范圍;
(2)若f(x)的最小值為-3,求曲線y=f(x)在(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若復(fù)數(shù)z滿足|z-1-2i|=2,則|z-3|的最小值為2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在數(shù)列{an}中,a1=2,a2=3,an+2=3an+1-2an,則an=2n-1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知C6x=C62,則x=2或4.

查看答案和解析>>

同步練習(xí)冊答案