18.若實(shí)數(shù)x,y滿足x>y>0,且$\frac{1}{x-y}$+$\frac{8}{x+2y}$=1,則x+y的最小值為$\frac{25}{3}$.

分析 實(shí)數(shù)x,y滿足x>y>0,且$\frac{1}{x-y}$+$\frac{8}{x+2y}$=1,可得x+y=$\frac{1}{3}(x-y)+\frac{2}{3}(x+2y)$=$\frac{1}{3}[(x-y)+2(x+2y)]$$(\frac{1}{x-y}+\frac{8}{x+2y})$=$\frac{1}{3}(17+\frac{2(x+2y)}{x-y}+\frac{8(x-y)}{x+2y})$,利用基本不等式的性質(zhì)即可得出.

解答 解:實(shí)數(shù)x,y滿足x>y>0,且$\frac{1}{x-y}$+$\frac{8}{x+2y}$=1,
則x+y=$\frac{1}{3}(x-y)+\frac{2}{3}(x+2y)$=$\frac{1}{3}[(x-y)+2(x+2y)]$$(\frac{1}{x-y}+\frac{8}{x+2y})$=$\frac{1}{3}(17+\frac{2(x+2y)}{x-y}+\frac{8(x-y)}{x+2y})$≥$\frac{1}{3}(17+2×2\sqrt{\frac{x+2y}{x-y}×\frac{4(x-y)}{x+2y}})$=$\frac{25}{3}$.
當(dāng)且僅當(dāng)y=$\frac{5}{3}$,x=$\frac{20}{3}$時(shí)取等號(hào).
故答案為:$\frac{25}{3}$.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,點(diǎn)E是菱形ABCD所在平面外一點(diǎn),EA⊥平面ABCD,EA∥FB∥GD,∠ABC=60°,EA=AB=2BF=2GD.
(I)求證:平面EAC⊥平面ECG;
(II)求二面角B-EC-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.種子發(fā)芽率與晝夜溫差有關(guān).某研究性學(xué)習(xí)小組對(duì)此進(jìn)行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發(fā)芽數(shù),如表:
日    期3月12日3月13日3月14日3月15日3月16日
晝夜溫差(°C)101113128
發(fā)芽數(shù)(顆)2325302616
(I)從3月12日至3月16日中任選2天,記發(fā)芽的種子數(shù)分別為c,d,求事件“c,d均不小于25”的概率;
(II)請(qǐng)根據(jù)3月13日至3月15日的三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehaty=\widehata+\widehatbx$;
(III)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與實(shí)際數(shù)據(jù)誤差均不超過2顆,則認(rèn)為回歸方程是可靠的,試用3月12日與16日的兩組數(shù)據(jù)檢驗(yàn),(II)中的回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知二次數(shù)f(x)=ax2+bx+c(a≤b)的值域?yàn)閇0,+∞),則$\frac{a-b+4c}{a+b}$的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(x+1)(x2-$\frac{2}{{x}^{3}}$)5的展開式中的常數(shù)項(xiàng)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,若b=$\sqrt{2}$asinB,則角A的大小為$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)中,最小正周期為π且一條對(duì)稱軸為$x=\frac{π}{8}$的函數(shù)是( 。
A.y=sin2x+cos2xB.y=sinx+cosxC.$y=cos(2x+\frac{π}{2})$D.$y=sin(2x+\frac{π}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}\right.$(θ∈[0,2π]),則圓C的圓心坐標(biāo)為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若關(guān)于x的不等式|x-1|+|x+m|>3的解集為R,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-4)∪(2,+∞)B.(-∞,-4)∪(1,+∞)C.(-4,2)D.[-4,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案