9.已知等比數(shù)列{an}中,log2a1+log2a7=4,則a3a5=16.

分析 由已知結(jié)合對數(shù)的運算性質(zhì)求得a1a7的值,再由等比數(shù)列的性質(zhì)得答案.

解答 解:由log2a1+log2a7=4,得log2(a1a7)=4,
∴a1a7=16,
在比數(shù)列{an}中,由等比數(shù)列的性質(zhì)可得a3a5=a1a7=16.
故答案為:16.

點評 本題考查對數(shù)的運算性質(zhì)和等比數(shù)列的性質(zhì),是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知(1+2x)n的展開式中第6項與第7項的系數(shù)相等,求:
(1)展開式中二項式系數(shù)最大的項;
(2)展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列給出的賦值語句中正確的是( 。
A.4=MB.M=-MC.B=A=3D.X=Y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.定義運算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,設(shè)函數(shù)$y=f(x)=|{\begin{array}{l}{sinx}&{\sqrt{3}}\\{cosx}&1\end{array}}|$,將函數(shù)y=f(x)向左平移m(m>0)個單位長度后,所得到圖象關(guān)于y軸對稱,則m的最小值是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.當(dāng)x∈(0,e]時,證明${e^2}{x^2}-\frac{5}{2}x>(x+1)lnx$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中抽取一個容量為n的樣本.如果采用系統(tǒng)抽樣法和分層抽樣法抽取,不用剔除個體;如果樣本容量增加一個,則在采用系統(tǒng)抽樣時,需要在總體中先剔除1個個體.則樣本容量n=6,其中工程師晏某被抽中的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列事件為隨機事件的是( 。
A.拋一個硬幣,落地后正面朝上或反面朝上
B.邊長為a,b的長方形面積為ab
C.從含有10%次品的100個零件中取出2個,2個都是次品
D.平時的百分制考試中,小強的考試成績?yōu)?05分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=m-|x-2|,m∈R,f(x+2)≥0的解集為[-2,2].
(1)求m的值;
(2)若?x∈R,f(x)≥-|2x-1|-t2+$\frac{3}{2}$t恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線x2=2py(p>0)上一點$P(t,\frac{7}{8})$到拋物線焦點的距離為1,直線3x-2y+1=0與拋物線交于A,B兩點.M為拋物線上的點(異于原點),且MA⊥MB.
(Ⅰ)求p的值;
(Ⅱ)求△MAB面積.

查看答案和解析>>

同步練習(xí)冊答案