已知A={x|0≤x≤4} B={y|0≤y≤2},從A到B的對(duì)應(yīng)法則分別為①x→y=x②x→y=x-2③x→y=④x→y=|x-2|,其中能構(gòu)成映射的個(gè)數(shù)為

[  ]

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A,B是非空集合,定義A×B={x|x∈A∪B,且x∉A∩B},已知A={x|0≤x≤2},B={x|x≥0},則A×B等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|0≤x≤4},B={y|0≤y≤2},下列對(duì)應(yīng)法則中可以是從A至B的函數(shù)的有
①②
①②

①f:x→y=
x
3

②f:x→y=
x
2

③f:x→y=x
④f:x→y=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|-1≤x≤2},B={x|0<x≤3},全集U=R,則B∩(?UA)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:東城區(qū)2001~2002學(xué)年度第一學(xué)期教學(xué)目標(biāo)檢測(cè) 高一數(shù)學(xué)-~+A、B 題型:013

已知A={x|0≤x≤4} B={y|0≤y≤2},從A到B的對(duì)應(yīng)法則分別為①x→y=x②x→y=x-2③x→y=④x→y=|x-2|,其中能構(gòu)成映射的個(gè)數(shù)為

[  ]

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案