分析 $\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{{{a_{n-1}}}}{n}={a_n}-2(n≥2)$,可得n=2時,$\frac{{a}_{1}}{2}$=a2-2,解得a2=3.$\frac{{a}_{1}}{2}+\frac{{a}_{2}}{3}$+…+$\frac{{a}_{n-1}}{n}$+$\frac{{a}_{n}}{n+1}$=an+1-2,可得:$\frac{{a}_{n+1}}{n+2}$=$\frac{{a}_{n}}{n+1}$,即可得出.
解答 解:∵$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{{{a_{n-1}}}}{n}={a_n}-2(n≥2)$,
∴n=2時,$\frac{{a}_{1}}{2}$=a2-2,解得a2=3.
$\frac{{a}_{1}}{2}+\frac{{a}_{2}}{3}$+…+$\frac{{a}_{n-1}}{n}$+$\frac{{a}_{n}}{n+1}$=an+1-2,
∴$\frac{{a}_{n}}{n+1}$=an+1-2-(an-2),化為:$\frac{{a}_{n+1}}{n+2}$=$\frac{{a}_{n}}{n+1}$,
∴$\frac{{a}_{n}}{n+1}$=$\frac{{a}_{n-1}}{n}$=…=$\frac{{a}_{2}}{3}$=1,
∴an=n+1,n=1時也成立.
故答案為:an=n+1.
點評 本題考查了數(shù)列遞推關系、數(shù)列通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,1) | B. | (-1,0) | C. | {-1,0,1} | D. | {-1,0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{2}$ | B. | π | C. | $\frac{π}{2}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
P(K2≥k0) | 0.010 | 0.005 | 0.001 |
k0 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com