拋擲一枚質(zhì)地均勻的骰子,落地后記事件A為“奇數(shù)點向上”,事件B為“偶數(shù)點向上”,事件C為“向上的點數(shù)是2的倍數(shù)”,事件D為“2點或4點向上”。則下列每對事件是互斥但不對立的是(   )
A.A與BB.B與CC.C與DD.A與D
D

試題分析:A和B是互斥、且對立;B和C不是互斥,那就肯定不是對立了;A和D是互斥,但不是對立;
C和D是互斥,但不是對立,選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

集合A={(x,y)|y≥|x-1|},集合B={(x,y)|y<-|x|+6},先后擲兩顆骰子,擲第一顆骰子得點數(shù)為a,擲第二顆骰子得點數(shù)為b,則(a,b)∈A∩B的概率等于( 。
A.
1
4
B.
2
9
C.
7
36
D.
11
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個工人在上班時間[0,5](單位:小時)內(nèi)看管兩臺機器.每天機器出故障的時刻是任意的,一臺機器出了故障,就需要一段時間檢修,在檢修期間另一臺機器也出了故障,稱為二機器“會面“.7果每臺機器的檢修時間都是1小時,則此工人在上班時間內(nèi),二機器會面的概率是(  )
A.
16
25
B.
9
25
C.
1
5
D.
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從裝有除顏色外完全相同的2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是( )
A.至少有1個白球,都是白球B.至少有1個白球,至少有1個紅球
C.恰有1個白球,恰有2個白球D.至少有1個白球,都是紅球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

抽查10件產(chǎn)品,設(shè)事件A:至少有兩件次品,則A的對立事件為(    )
A.至多兩件次品B.至多一件次品
C.至多兩件正品D.至少兩件正品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從某班學(xué)生中任意找出一人,如果該同學(xué)的身高小于160cm的概率為0.2,該同學(xué)的身高在[160,175]cm的概率為0.5,那么該同學(xué)的身高超過175cm的概率為     (   )
A.0.8B.0.7C.0.3D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如下圖,用A、B、C三類不同的元件連接兩個系統(tǒng)N1,N2,當元件A、B、C都正常工作時系統(tǒng)N1正常工作,當元件A正常工作且元件B、C至少有一個正常工作時系統(tǒng)N2正常工作,已知元件A、B、C正常工作的概率分別為0.80,0.90,0.90,分別求系統(tǒng)N1,N2正常工作的概率p1,p2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某射手在一次射擊訓(xùn)練中,射中10環(huán),9環(huán),8環(huán)、7環(huán)的概率分別是0.21,0.23,0.25,0.28,計算這個射手在一次射擊中:
(1)射中10環(huán)或7環(huán)的概率;  (2)不夠7環(huán)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸取1個球,甲先取,乙后取,然后甲再取,,取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的.求:
(1)則袋中原有白球的個數(shù);
(2)取球2次終止的概率;
(3)甲取到白球的概率

查看答案和解析>>

同步練習(xí)冊答案