2.已知等差數(shù)列{an}的前n項和為Sn,且a2=2,S9=45.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足b1=l,$\frac{{{3^{{b_{n+1}}}}}}{{{3^{b_n}}}}$=${3^{a_n}}$(n∈N+),求數(shù)列{$\frac{1}{{{b_n}+n-1}}$}的前n項和Tn

分析 (1)由等差數(shù)列前n項和公式、通項公式列出方程組,求出首項與公差,由此能求出an
(2)推導(dǎo)出bn+1-bn=n,利用累加法求出bn=$\frac{1}{2}$n2-$\frac{1}{2}$n+1,從而$\frac{1}{_{n}+n-1}$=$\frac{2}{{n}^{2}+n}$=2($\frac{1}{n}-\frac{1}{n+1}$),由此能求出數(shù)列{$\frac{1}{{{b_n}+n-1}}$}的前n項和Tn

解答 (本小題滿分12分)
解:(1)∵等差數(shù)列{an}的前n項和為Sn,且a2=2,S9=45,
∴$\left\{\begin{array}{l}{{a}_{1}+d=2}\\{9{a}_{1}+\frac{9×8}{2}d=45}\end{array}\right.$,解得a1=1,d=1,
an=1+(n-1)×1=n.…(4分)
(2)∵數(shù)列{bn}滿足b1=l,$\frac{{{3^{{b_{n+1}}}}}}{{{3^{b_n}}}}$=${3^{a_n}}$(n∈N+),
∴bn+1-bn=n,
∴bn=b1+b2-b1+b3-b2+…+bn-bn-1
=1+1+2+3+…+(n-1)
=1+$\frac{n-1}{2}$(1+n-1)
=$\frac{1}{2}$n2-$\frac{1}{2}$n+1,
∴$\frac{1}{_{n}+n-1}$=$\frac{2}{{n}^{2}+n}$=2($\frac{1}{n}-\frac{1}{n+1}$),
∴Tn=2(1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}-\frac{1}{n+1}$)=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$.

點評 本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,是中檔題,解題時要認(rèn)真審題,注意裂項求和法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點P(0,f(0))處的切線為y=x.
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)=k有兩個不等實根x1,x2,求實數(shù)k的取值范圍;
(3)在(2)的條件下,求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某校100名學(xué)生數(shù)學(xué)競賽成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100],則該次數(shù)學(xué)成績在[50,60)內(nèi)的人數(shù)為( 。
A.20B.15C.10D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐A-CDEF中,四邊形CDFE為直角梯形,CE∥DF,EF⊥FD,AF⊥平面CEFD,P為AD中點,EC=$\frac{1}{2}$FD.
(Ⅰ)求證:CP∥平面AEF;
(Ⅱ)設(shè)EF=2,AF=3,F(xiàn)D=4,求點F到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(x2+ax)ex的兩個極值為x1,x1,且x1+x1=-2-$\sqrt{5}$.
(1)求x1,x1的值;
(2)若f(x)在(c-1,c)(其中c<-1)上是單調(diào)函數(shù),求c的取值范圍;
(3)當(dāng)m≤-e,求證:[f(x)+2ex]•[(x-2)ex-m+1]>$\frac{3}{4}$ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx+$\frac{1}{x}$-1.
(1)求函數(shù)的單調(diào)性;
(2)證明:ln(n+1)!>2n-4$\sqrt{n+1}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)a,b是關(guān)于t的方程t2cosθ+t sinθ=0的兩個不等實數(shù)根,則過A(a,a2),B(b,b2)兩點的直線與雙曲線$\frac{{x}^{2}}{co{s}^{2}θ}$-$\frac{{y}^{2}}{si{n}^{2}θ}$=1的公共點的個數(shù)為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=|x-1|-|x-m|.
(Ⅰ)若m=2,解不等式f(x)≥1;
(Ⅱ)如果?x∈R,f(x)≤5,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.方程x2-mnx+m+n=0有整數(shù)根,且m.n為自然數(shù),則m、n的有幾對,試求出來.

查看答案和解析>>

同步練習(xí)冊答案