如圖,在半徑為30cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上.
(1)怎樣截取才能使截得的矩形ABCD的面積最大?并求最大面積;
(2)若將所截得的矩形鋁皮ABCD卷成一個(gè)以AD為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),應(yīng)怎樣截取,才能使做出的圓柱形形罐子體積最大?并求最大面積.
解:如圖所示,(1)連接OC,設(shè)BC=x,矩形ABCD的面積為S;則
AB=2(其中0<x<30),
∴S=2x=2≤x2+(900﹣x2)=900,
當(dāng)且僅當(dāng)x2=900﹣x2,即x=15時(shí),S取最大值900;
所以,取BC=cm時(shí),矩形ABCD的面積最大,最大值為900cm2。
(2)設(shè)圓柱底面半徑為r,高為x,體積為V,
由AB=2=2πr,得r=,
∴V=πr2h=(900x﹣x3),(其中0<x<30);
由V'=(900﹣3x2)=0,得x=10;
因此V=(900x﹣x3)在上是增函數(shù),在(10,30)上是減函數(shù);
∴當(dāng)x=10時(shí),V的最大值為,
即取BC=10cm時(shí),做出的圓柱形罐子體積最大,最大值為cm3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在半徑為30cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上.
(1)怎樣截取才能使截得的矩形ABCD的面積最大?并求最大面積;
(2)若將所截得的矩形鋁皮ABCD卷成一個(gè)以AD為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),應(yīng)怎樣截取,才能使做出的圓柱形形罐子體積最大?并求最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在半徑為30cm的
14
圓形(O為圓心)鋁皮上截取一塊矩形材料OABC,其中點(diǎn)B在圓弧上,點(diǎn)A、C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個(gè)以AB為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng)AB=xcm,圓柱的體積為Vcm3
(1)寫出體積V關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),才能使做出的圓柱形罐子體積V最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省無(wú)錫市惠山區(qū)洛社中學(xué)高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在半徑為30cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上.
(1)怎樣截取才能使截得的矩形ABCD的面積最大?并求最大面積;
(2)若將所截得的矩形鋁皮ABCD卷成一個(gè)以AD為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),應(yīng)怎樣截取,才能使做出的圓柱形形罐子體積最大?并求最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省南京市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,在半徑為30cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上.
(1)怎樣截取才能使截得的矩形ABCD的面積最大?并求最大面積;
(2)若將所截得的矩形鋁皮ABCD卷成一個(gè)以AD為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),應(yīng)怎樣截取,才能使做出的圓柱形形罐子體積最大?并求最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案